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Brain metastases (BM) account 
for the vast majority of intra-
cranial malignancies in adults, 

occurring in 20% to 40% of all patients 
with malignant tumors (mostly from 
lung and breast cancers).1,2 Due to im-
proved local and systemic therapies and 
increased utilization of MR imaging, 
the incidence of BM is rising. Despite 
technological advances and more treat-
ment options for these patients, un-
selected populations with BM continue 
to have a poor prognosis and survival.2,3

The use of prognostic systems such 
as the recursive partitioning analysis 
(RPA) and graded prognostic assess-
ment (GPA) have helped to categorize 
BM patients based on several factors, 
such as age at diagnosis, Karnofsky 
Performance Status (KPS), status of 
the primary cancer, number of brain le-
sions, and absence or presence of ex-
tracranial disease.4,5 Disease-specific 
GPAs have been developed,6 including 

the incorporation of molecular markers.7 
Nomograms have also been generated 
to provide individual survival estimates 
and help decide on treatment options.8

The most common treatment for pa-
tients with > 5 BM is whole-brain radia-
tion therapy (WBRT). Currently, use of 
stereotactic radiosurgery, especially for 
patients with 1-4 lesions, and systemic 
approaches with or without ablative 
treatments, is increasing2,9 in part due 
to the toxicity associated with WBRT. 
In this review, we discuss strategies to 
mitigate the effects of WBRT on neuro-
cognitive function in patients with BM.

Whole-brain Radiation Therapy 
(WBRT)

Since its inception in the 1950s, 
WBRT has been the primary treatment 
option for patients with BM.10 For de-
cades, this treatment was considered the 
gold standard for patients with BM as 
it was easy to deliver, readily available, 

and effective at palliating neurologic 
signs and symptoms. Multiple phase III 
studies were conducted to determine the 
optimal dose and fractionation scheme 
of WBRT, with median survivals rang-
ing 3 to 6 months.11-14

The results of the Quality of Life 
after Treatment for Brain Metastases 
(QUARTZ) trial have brought into ques-
tion the use of WBRT for poor perfor-
mance status patients with BM.15 In this 
study, patients with BM from nonsmall 
cell lung cancer were randomized to op-
timal supportive care vs. WBRT. The use 
of WBRT did not improve quality of life, 
overall survival, or decrease steroid use 
compared to best supportive care. How-
ever, the trial has been criticized because 
of poor survival in both arms (8-9 weeks), 
an unplanned early evaluation that biased 
results, and the high rate of steroid use in 
both arms (98% received at least 8 mg of 
daily dexamethasone), which may have 
impacted the EuroQol EQFD-3L quality 
of life metric used in the trial.

Neurocognitive Decline from WBRT
For years, toxicities from WBRT, in-

cluding neurocognitive decline, were 
largely ignored given the poor outcomes 
associated with BM. A wide spectrum of 
WBRT-associated neurological impair-
ments have been described,16-18 many of 
which are believed to have multifacto-
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rial causes, including radiation-induced 
injury, effects from tumors, and chemo-
therapy (Figure 1).

A phase III trial of WBRT vs. 
WBRT plus motexafin gadolinium, a 
radiation sensitizer, provided the first 
comprehensive assessment of neuro-
cognitive changes in patients under-
going WBRT.19,20 Assessment was 
performed using the Hopkins Verbal 
Learning Test (HVLT) for immediate 
recall, delayed recall, and recognition; 
Controlled Oral Word Association 
(COWA) for verbal fluency; Trailmak-
ing Test A for visual-motor scanning 
speed; Trailmaking Test B for execu-
tive function; and pegboard dominant 
hand and pegboard nondominant hand 
for fine motor skills. Of 401 enrolled 
patients, 90.5% had neurocognitive im-
pairment prior to WBRT initiation. The 
addition of motexafin gadolinium did 
not result in a significant reduction in 
cognitive decline compared to WBRT 
alone; however, a subgroup analysis 
suggested that patients with NSCLC 
benefited from the standpoint of time 
to neurocognitive progression. Based 
on its design, the study was not able to 

identify neurocognitive changes attrib-
utable to WBRT;20 however, regression 
of brain metastases after WBRT was 
associated with improved survival and 
preserved neurocognitive function.21

Given concern for the effect of 
WBRT on neurocognitive function, the 
use of stereotactic radiosurgery (SRS) 
as a primary modality for BM treat-
ment has increased. A phase III study 
performed at the University of Texas 
MD Anderson Cancer Center, Houston, 
reported by Chang and colleagues ran-
domized patients to SRS plus WBRT 
compared to SRS alone and demon-
strated greater decline in memory (as 
demonstrated by the Hopkins Verbal 
Learning Test-Revised [HVLT-R]) 
at 4 months) in patients who received 
WBRT.22 Other studies have demon-
strated that the addition of WBRT to 
SRS in selected patients does not im-
prove survival but does decrease distant 
brain failures, at the cost of decreased 
cognitive function and quality of life at 
3 months.23-25 Despite these results, it is 
important to remember that a system-
atic review of neurocognitive effects 
of WBRT for newly diagnosed brain 

metastases reported that neurocogni-
tive decline is predominant at 4 months, 
mild in severity (only 8% ≥ grade 2 on 
the SOMA-LENR scale), strongly de-
pendent on brain metastases control, 
and partially resolved at a later time.26

Given increasing concern regarding 
the effect of WBRT on neurocognitive 
function, strategies to mitigate the ef-
fects of WBRT are an unmet need and 
are being actively explored. This article 
reviews approaches and rationale for 
avoiding or limiting damage to healthy 
brain, small and medium blood vessels, 
the hippocampus, and white matter. 

Strategies to Mitigate WBRT Effects 
The following strategies have shown 

promise for preventing neurocogni-
tive decline: hippocampal avoidance 
(HA)-WBRT, the NMDA receptors 
antagonist memantine, renin angioten-
sin-aldosterone system (RAAS) block-
ers, donepezil / lithium, peroxisomal 
proliferator-activated receptor agonists, 
and use of SRS alone (the latter not ad-
dressed in this review). It is important 
to recognize that SRS alone is not ap-
propriate in every case of BM, such as 
patients with multiple metastases (> 5 
lesions), leptomeningeal disease, and 
small cell lung cancer histology; hence, 
strategies to mitigate effects of WBRT 
are essential.

Hippocampal avoidance  
(HA)-WBRT

The hippocampus plays an integral 
role in memory formation. Neural stem 
cells in the subgranular zone of the hip-
pocampus are susceptible to radiation 
damage, which usually compromises 
memory function.27,28

The rationale of HA-WBRT arose 
from the observation that cognitive 
function deficits following WBRT cor-
related with hippocampal-related func-
tions of memory, learning, and spatial 
processing. Based on this observation, 
two studies sought to determine if hip-
pocampal sparing was feasible from the 

FIGURE 1. Multifactorial influences of neurocognitive function in patients with brain metastases.
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standpoint of hippocampal involvement 
by metastasis. Wan et al showed a 1.1% 
involvement rate (of more than 2,270 
metastases) in hippocampal regions.29 

In an analysis of 371 BM patients with a 
total of 1,133 tumors, Gondi et al found 
no hippocampal lesions; however, 9% of 
patients had tumors within 5 mm of the 
hippocampal regions.30

RTOG 0933, a phase II trial, analyzed 
the impact of HA-WBRT on declarative 
memory and used specific contouring 
guidelines for the subgranular zones of 
the hippocampi with a 5-mm expansion.31 
Dose to 100% of the hippocampus was 
limited to 9 Gy with a maximum dose 
limited to 16 Gy. The remaining brain 
parenchyma received a dose of 30 Gy 
in 10 fractions. In this study, 42 patients 
showed a mean decline from baseline in 
HVLT delayed recall (HVLT-DR) of 7% 
at 4 months compared to 30% observed in 
a historical control treated with traditional 
WBRT (p = 0.0003). Of note, 8% is what 
one might expect for immediate memory 
deterioration with SRS alone. No decline 
on QoL was reported nor was < grade 4 
toxicity.31 Figure 2 shows HA-WBRT 
using linear accelerator-based intensity-
modulated radiation therapy (IMRT). 
Currently, two randomized trials, NRG 
CC001 and CC003, described later,  
are ongoing to confirm the results of 
RTOG 0933.

NMDA Receptor Antagonist 
(Memantine)

N-methyl-D-aspartate (NMDA) recep-
tors in the hippocampus are activated by 

glutamate and play a role in learning and 
memory. Radiation therapy to the brain 
can overexcite these receptors, which 
alters the ratio of NMDA to GABA re-
ceptors, translating to possible neuronal 
cell death (excitotoxicity). Memantine 
is a noncompetitive NMDA receptor an-
tagonist with proven efficacy to prevent 
receptor remodeling and preserve long-
term potentiation in animal models and in 
vascular and Alzheimer’s dementia.32,33 

The role of memantine was assessed 
by RTOG 0614, a phase III trial compar-
ing WBRT (37.5 Gy in 15 fractions) plus 
memantine vs. WBRT plus placebo.34 

This trial enrolled 554 patients with me-
mantine administered within 3 days of 
starting WBRT and for the following 24 
weeks, escalating to a final dose of 10 mg 
BID. At 24 weeks, a decline in delayed 
recall (HVLT-DR) was appreciated in 
patients receiving memantine. Unfor-
tunately, the study was underpowered 
(35%), as only 149 patients were analyz-
able at 24 weeks due to early deaths in 
both arms, and this result was not statisti-
cally significant (p = 0.059). The addition 
of memantine did, however, demonstrate 
a longer time to cognitive decline with 
a probability of cognitive function fail-
ure at 24 weeks of 53.8% vs. 64.9% (p 
= 0.01).34 The authors of the study advo-
cate for the routine use of memantine in 
patients receiving WBRT given the low 
toxicity and longer time to cognitive de-
cline, despite not meeting the primary 
HVLT-DR endpoint. As part of the trial, 
a significant number of patients also en-
rolled on the translational section of the 

study in which apoE (Alzheimer’s gene) 
and inflammatory markers were mea-
sured. Results and correlation to outcome 
are expected later this year.

Renin Angiotensin System  
(RAS) Blockers

The Renin Angiotensin System 
(RAS) is known for having marked ef-
fects within organs as well as a systemic 
role in fluid balance. The local brain 
RAS is complex and involves mainte-
nance of the blood-brain barrier, learn-
ing, memory spectrums, behaviors, and 
emotions.35 Preclinical models have 
demonstrated that the RAS may be in-
volved in radiation-induced damage. 
The blockade of the RAS in irradiated 
rats has been shown to prevent radiation 
effects in lung and kidney tissues.36,37

Kim et al administered ramipril for 6 
months to rats treated with brain RT (30 
Gy), reporting a significant reduction in 
the demyelination of optic nerves and 
reduced severity of visual injury with 
the addition of Ramipril.38 Similarly, the 
administration of an angiotensin receptor 
blocker, L-158,809, to rats prior to and 
after 40 Gy WBRT prevented radiation-
induced cognitive impairment.39

While RAS blockers have proven ac-
tivity in modulating radiation-induced 
brain injury, their mechanism of ac-
tion in the brain is poorly understood. 
However, based on their safety profile, 
widespread use, and potential benefits to 
neurocognitive function, they should be 
considered in future studies for patients 
receiving WBRT.40

Donepezil
Donepezil, an acetylcholinesterase in-

hibitor, is used to treat mild to moderate 
dementia in Alzheimer’s disease (AD). 
This drug enhances cholinergic neuro-
transmission by delaying breakdown of 
acetylcholine in synaptic clefts, a mecha-
nism associated with memory. 

In this context, improved cognitive 
function, mood and QoL were reported 
when donepezil was administrated for 

FIGURE 2. Hippocampal avoidance (HA) whole-brain radiotherapy (WBRT) using linear accel-
erator-based intensity-modulated radiation therapy (IMRT). The images show the hippocampi 
(red), the 30 Gy isodose line (yellow), 25 Gy isodose line (green), and 16 Gy isodose line (blue) 
- (D max (0.03 cc) hippocampus </= 16 Gy). HA-WBRT with IMRT achieves significant dose 
reduction (hippocampus), while delivering 30 Gy to the rest of the brain.
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24 weeks in a group of patients with 
primary brain tumors who had post-RT 
survival ≥ 6 months.41 Following these 
results, a randomized, double-blinded, 
placebo-controlled trial of donepezil 
and partial or WBRT was performed. 42

Rapp et al reported on 198 adult brain 
tumor survivors ≥ 6 months who received 
central nervous system (CNS) irradiation 
(WBRT or partial) to ≥ 30 Gy and were 
randomly assigned to receive 24 weeks 
of donepezil 5-10 mg per day or a pla-
cebo. Cognitive functioning was evalu-
ated at baseline, 12 weeks, and 24 weeks 
with a battery of neuropsychological tests 
(cognitive composite score), which was 
completed by 74% of the participants. 
Treatment with donepezil did not sig-
nificantly improve the overall composite 
score, but the donepezil group performed 
better than placebo on memory (recogni-
tion, p = .027; discrimination, p = .007), 
and motor speed and dexterity tests (p = 
.016). Significant interactions between 
pretreatment cognitive function and treat-
ment were found for cognitive compos-
ite (p = .01), immediate recall (p = .05),  
delayed recall (p = .004), attention (p = 
.01), visual-motor skills (p = .02), and 
motor speed and dexterity (p < .001).42

While it appears donepezil has a role in 
treating cognitive impairment associated 
with brain cancer and its treatments, more 
studies are necessary to prove the value 
of this drug in this selected population.

Peroxisomal Proliferator-
activated Receptor Agonists 
(PPAR)

Chronic inflammation has been im-
plicated in the development and progres-
sion of radiation-induced late effects.43 
This provides a rationale for the applica-
tion of anti-inflammatory interventions 
to reduce radiation-induced brain in-
jury. Peroxisomal proliferator-activated 
receptors (PPAR) α, β (δ), and γ are 
members of the nuclear hormone re-
ceptor superfamily of ligand-activated 
transcription factors that regulate gene 
expression.44 PPAR activation can affect 

anti-proliferative and anti-inflammatory 
cellular physiology. These effects are 
observed in many cell types, including 
brain glial cells and blood lymphocytes, 
cells whose activation contributes to the 
initiation and progression of damage oc-
curring in neurological diseases such as 
AD and multiple sclerosis (MS).45

Animal models have demonstrated 
the impact of PPAR agonists to reduce 
radiation-therapy-related late cognitive 
effects. For example, administration of 
the anti-inflammatory peroxisomal pro-
liferator-activated receptor γ (PPARγ) 
agonist, pioglitazone, to adult male 
rats was proven to substantially reduce 
radiation-induced cognitive impair-
ment and similar results have been 
shown for the PPAR alpha agonist, fe-
nofibrate.46,47 Furthermore, fenofibrate 
preserves hippocampal neurogenesis 
and inhibits microglial activation after 
WBRT, and protects cortical neurons 
from inflammatory mediators.48,49 

Similar anti-inflammatory properties 
have been demonstrated with the PPARγ 
agonist, pioglitazone.50 Data shows 
promise for mitigating cognitive changes 
related to brain radiation therapy, and a 
phase 1 trial (NCT01151670) studying 
the side effects and optimal dose of pio-
glitazone hydrochloride in preventing ra-
diation-induced cognitive dysfunction for 
both patients with BM and primary brain 
tumors was recently completed.

Ongoing Studies
The NRG has two ongoing studies to 

corroborate the results of RTOG 0614 
and RTOG 0933.  NRG-CC003 is a ran-
domized phase II/III trial of prophylac-
tic cranial irradiation (PCI) comparing 
WBRT to HA-WBRT in patients with 
extensive and limited-stage small-cell 
lung cancer who achieve a complete or 
partial response to chemotherapy. The 
randomized phase II trial is a noninfe-
riority trial to determine whether the 
12-month brain relapse rate following 
HA-PCI is noninferior compared to the 
rate after PCI. The phase III trial tests 

whether HA-PCI reduces the likelihood 
of a 6-month decline in HVLT-R de-
layed recall compared to PCI. Patients 
will be stratified by memantine use, stage 
(limited vs. extensive), and age (< 60 vs. 
> 60 years old).   

NRG-CC001 is a randomized phase 
III trial of HA-WBRT plus memantine 
vs. WBRT (30 Gy in 10 fractions) plus 
memantine for patients with histologi-
cally or cytologically proven diagnosis 
of solid tumor malignancy within 5 years 
prior. This trial will determine whether 
use of HA-WBRT increases time to 
neurocognitive failure at months 2, 4, 6 
and 12 as measured by neurocognitive 
decline on a battery of tests compared to 
WBRT. Prior therapy for brain metasta-
sis, including radiosurgery and surgical 
resection, is allowed.   

Conclusion
Treatments affecting neurocognitive 

function are of major concern for pa-
tients, their families, and physicians. It 
is, therefore, of paramount importance 
that treatment strategies for BM balance 
tumor control and survival with pres-
ervation of cognitive function, which 
impacts quality of life. The etiology of 
neurocognitive decline in cancer pa-
tients with BM is multifactorial and in-
cludes the tumors themselves, systemic 
agents, and the effects of WBRT. 

Current approaches to reduce the 
effects of WBRT on neurocognitive 
function in patients with BM include 
avoidance of WBRT, implementation 
of HA-WBRT, and prophylactic use of 
the NMDA receptor antagonist meman-
tine. Both HA-WBRT and memantine 
use are being investigated in ongoing 
NRG studies. Other promising strate-
gies include RAS blockers, acetylcho-
linesterase inhibitors, and peroxisomal 
proliferator-activated receptor agonists.   

We strongly encourage enrollment 
in ongoing and future trials that investi-
gate strategies to mitigate the effects of 
WBRT on neurocognitive function in 
patients with BM.   
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