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Liver cancer-related death rates 
continue to accelerate world-
wide.1,2 Numerous local tech-

niques are evolving to address the 
growing burden of disease. These tech-
niques include surgery (partial liver 
resection or liver transplant), ablation 
(radiofrequency, microwave, etha-
nol, cryoablation), and intra-arterial 
injections (chemoembolization, radi-
oembolization, bland embolization). 
Systemic treatments, such as sorafenib, 
regorafenib, or nivolumab, are also 
expanding. An additional option is 
stereotactic ablative radiation therapy 
(SABR). SABR has harnessed innova-
tions in external-beam radiation ther-
apy delivery and toxicity modeling to 

safely and noninvasively deliver high 
radiation therapy doses to liver tumors 
in only 1 to 5 treatments. Here we re-
view the indications, efficacy, toxicity 
and methods for SABR in liver tumors. 
While prospective comparative data is 
lacking between SABR and other local 
techniques, we suggest that SABR of-
fers high local control, low toxicity, 
and ability to treat a range of tumor vol-
umes and locations in a precise, nonin-
vasive manner. While choice of local 
liver tumor therapy is currently institu-
tion-specific, future utilization of liver 
SABR promises to increase with expe-
rience and recognition. 

SABR in the Treatment of Primary 
Liver Cancer 
Hepatocellular Carcinoma (HCC)

HCC is the most common primary 
liver cancer in the world, with a four-
fold increase in incidence over the last 
40 years in the United States.3 Partial 
liver resection or orthotopic liver trans-
plant (OLT) remain the accepted first-
line treatments for eligible patients.4,5 

Patients waiting for OLT are at risk 
for disease progression. Clinical series 
demonstrate that SABR can prevent 

HCC progression prior to transplant. 
Sapisochin et al compared SABR (n = 
36) with transcatheter arterial chemo-
embolization (TACE) (n = 99) and ra-
diofrequency ablation (RFA) (n = 244) 
as bridges to OLT. They found that 
drop-out rate, post-transplant survival 
and HCC recurrence were similar for 
all techniques, despite SABR treating 
a greater tumor burden than RFA: an 
average of 2 lesions to 1, 4.5 cm diam-
eter to 2.5 cm, and a higher mean Model 
of End-stage Liver Disease (MELD) 
score.6

In the United States, 70% to 90% of 
all HCC cases occur with cirrhosis, and 
many patients are unsuitable for resec-
tion.7 For patients unable to undergo 
definitive resection, Table 1 summa-
rizes studies demonstrating that SABR 
is an excellent option for tumor control 
with limited toxicity. No randomized 
data exist to prove superiority of SABR 
compared to other techniques. Never-
theless, a 2016 retrospective study from 
the University of Michigan compared 
SABR (n = 63 treated with 27 to 60 Gy 
in 3 to 5 fractions) to RFA (n = 161), 
showing they are equally effective for 
treating inoperable HCC < 2 cm, but 
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that SABR provides better local control 
(LC) than RFA for lesions ≥ 2 cm.8 A 
second retrospective investigation com-
pared SABR and TACE, with 2-year LC 
significantly better for SABR, 91.3% to 

22.9%, respectively, and no significant 
difference in overall survival (OS).9

An advantage of SABR compared 
with other local techniques is that le-
sions can be treated that are difficult to 

access by RFA, embolization or sur-
gery (eg, large volume tumors; disease 
complicated by portal thrombus;10 and 
lesions near the liver capsule, major 
vessels or diaphragm). 

Table 1. SABR HCC Series Outcomes 

 First Author,  Patients/ Median Study Design Dose/ Fractions Local Overall Toxicity % ≥ 
 Year Tumors Diameter  (BED for α/β=10) Control % Survival %  Grade 3 
  Liver    (1y/2y/3y) (1y/2y/3y)  
  function

 Sapir,  125/173 2.4 cm Retrospective, 42-50 Gy/3-5 97/91/--- 74/35/--- 8
 20189 CTP A & B  SABR vs TACE (BED10 100)   

 Sapisochin,  36/72
 20176 22 CTP A,  4.5 cm Retrospective:  36 Gy (30-40)/6 Drop-out rate 83/---/61, Before OLT = 0 
  14 CTP B  SABR vs TACE  (median BED10 58) before OLT =  61% 5-year 
    vs RFA, Bridge   16.7% survival 
    to OLT 

 Wahl,  63/83  2.2 cm Retrospective, 27-60 Gy/3-5 97/84/--- 74/46/--- 8
 20168 57 CTP A,   SABR vs RFA (median BED10 100) 
  24 CTP B,
  2 CTP C  

 Huertas,  77/97  2.4 cm Retrospective 45 Gy/3 (BED10 113) 99/99/--- 82/57/--- 5.2 
 201546 66 CTP A,       
  11 CTP B     

 Sanuki,  185 2.5 cm Retrospective 35-40 Gy/5 99/93/91 95/83/70 3
 201447 158 CTP A,    (BED10 60-72) 
  27 CTP B   

 Yoon,  93/103 2.0 cm Retrospective 30-60 Gy/3 95/---/92 86/54/--- 6.5
 201348 69 CTP A,    (BED10 60-180) 
  2 4 CTP B      

 Bibault,  75/96 3.7 cm Retrospective 40-50 Gy/3 90/90/--- 79/50/--- 8
 201349 67 CTP A,    (BED10 60-131) 
  8 CTP B     

 Bujold,  102/164 7.2 cm Phase I/II Trial 36 Gy (30-54)/6 87/---/--- 55/34/--- 36
 201350 102 CTP A   (median BED10 58)   

 Andolino,  60/71 3.2 cm Retrospective 30-48 Gy/3-5 ---/90/--- ---/67/--- 35
 201151 36 CTP A,    (BED10 60-72) 
  24 CTP B   

 O’Connor,  10/11 3.4 cm Retrospective: 51 Gy/3 Drop-out 100% 5-year Before
 201252 7 CTP A,   Bridge to OLT (BED10 138) rate before  survival OLT = 0 
  2 CTP B,    OLT= 0 %
  1 CTP C   

 Cárdenes,  17/25 4 cm Phase I Trial 40-48 Gy/3-5 100/100/--- 75/60/--- 18
 201053 6 CTP A, 1   (BED10 72-125) 
  1 CTP B      

Key: CTP = Child-Turcotte-Pugh, SABR = stereotactic ablative radiation therapy, TACE = transarterial chemoembolization, RFA = radiofrequency ablation,  
BED = biologically equivalent dose
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Intrahepatic Cholangiocarcinoma
Intrahepatic cholangiocarcinoma 

(ICC) is the second-most common 
primary liver cancer worldwide, rep-
resenting 10% to 20% of liver cancer 
diagnoses. Surgery is the only curative 
treatment for local disease, but up to 
70% of ICC is unresectable.11

In 2016, physicians from MD An-
derson Cancer Center and Harvard 
analyzed outcomes from a series of un-
resectable ICC patients who received 
chemotherapy followed by moderately 
hypofractionated radiation therapy and 
identified a survival advantage with 
dose escalation.12 Patients treated to a 
biologically equivalent dose (BED) > 
80.5 Gy had almost double the 3-year 
survival of those treated to lower doses 
(73% to 38%, respectively). 

Princess Margaret Hospital con-
ducted the first phase I trial using SABR 

to treat inoperable ICC. Ten patients 
were treated to a median dose of 36 Gy 
in 6 fractions, with 1-year LC of 65% 
and median OS of 15 months, an im-
provement over historic controls. There 
were no cases of radiation-induced liver 
disease (RILD), and toxicities were 
grade 3 or less.13

SABR in the Teatment of Liver 
Metastases

Each year, 30 000 patients with col-
orectal cancer (CRC) are found to have 
oligometastatic disease (OMD) limited 
to the liver either on presentation or at 
recurrence.2,14,15 In 2016, the European 
Society for Medical Oncology rec-
ommended the use of SABR in com-
bination with systemic agents to treat 
unresectable colorectal OMD.16 In the 
last decade, several phase I and II stud-
ies using SABR to treat hepatic OMD 

from favorable primaries have reported 
2-year LC rates > 90%, and median OS 
significantly higher than historical con-
trols treated with systemic therapy alone 
(29 to 32 months vs. 24 months for che-
motherapy).17-19 In a large retrospective 
series studying outcomes from SABR 
treatment of mainly hepatic OMD, Fode 
et al identified 5 factors associated with 
favorable survival: World Health Or-
ganization (WHO) performance status 
0-1, solitary metastasis, size ≤ 3 cm, 
metachronous metastases and pre-SBRT 
systemic therapy. BED10 > 100 Gy cor-
related with low local recurrence rates.20

The recent CLOCC trial (chemo-
therapy + local ablation vs chemother-
apy) randomized 119 patients with 
liver-only colorectal unresectable 
metastatic disease to systemic therapy 
alone vs systemic therapy with RFA 
and surgical resection (when possible), 

Table 2. SABR Liver Metastases Series Outcomes 

 First Author,  Patients/ Tumor Study Design Dose/  Tumor Local Overall Toxicity % ≥ 
 Year Tumors Diameter  Fractions Response % Control % Survival %  Grade 3 
     (BED for (CR/PR/SD/PD) (1y/2y/3y) (1y/2y/3y) 
     α/β=10)
 Meyer,  14/17 3.2 cm Phase I 35-40 Gy/1 69/31/0/0 100/100/--- 85/78/--- 0  
 201654    (BED10 157.5)    

 Scorsetti,  42/52 3.5 cm Phase II 75 Gy/3
 201418    (BED10 262.5) 43/17/9/31 95/91/85 81/65/--- 0

 Fode,  225 --- Retrospective 45-68 Gy/3
 201520    (BED10 112.5-228) --- 91/87/--- At 1/3/5/7.5 years: 4.8
        80/39/23/12 
 Comito,  42/52 < 6 cm Phase II 75 Gy/3 43/32/15/10 95/90/85 85/65/43 0
 201417    (BED10 262.5) 

 Stintzing,  30/35 3.3 cm Retrospective: 24-26 Gy/1 --- 85/80/--- Median OS: 0
 201322   Matched study, (BED10 87.5)   34.4 months
    SABR vs RFA 
 Goodman,  19/33 4.2 cm Phase I 18-30 Gy/1 --- 77/---/--- 62/49/--- 10.5
 201055    (BED10 50.4-120) 

 Lee,  68 5.2 cm Phase I 41.4 (27-60) Gy/6 6/43/30/21 71/---/--- 63/---/--- 10.3
 200956    (BED10 71.4) 

 Rusthoven,  47/63 2.7 cm Phase I/II 36-60 Gy/3 --- 95/92/--- 77/30/--- 2.1
 200919    (BED10 79.2-180) 

Key: SABR = stereotactic ablative radiation therapy, RFA = radiofrequency ablation, BED = biologically equivalent dose, CR = complete response, PR = partial 
response, SD = stable disease, PD = progression of disease
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and demonstrated a median OS bene-
fit with local therapy (45.6 months vs 
40.5 months).21 While no local ablative 
technique has demonstrated superior-
ity compared to another local ablative 
technique in a randomized trial, Stintz-
ing et al performed a matched com-
parative analysis of 60 patients with 
unresectable colorectal liver metasta-
ses, divided between SABR (24 to 26 
Gy in 1 fraction) and RFA. One-year 
LC favored SABR (85%) compared to 
RFA (65%).22 This suggests that SABR 
could further enhance survival benefits 
for unresectable liver metastases com-
pared to RFA. 

SABR also provides excellent con-
trol of oligometastatic liver disease 
from noncolorectal primaries. A 2016 
series demonstrated 100% 2-year LC 
rates for 58 noncolorectal liver metas-
tases.23 Additional studies of SABR 
for liver metastases are summarized in 
Table 2.

SABR Technique 
Dose

In practice, the authors of this manu-
script generally follow the isotoxicity 
approach initially proposed by Dawson 
et al and adapted into the Radiation Ther-
apy Oncology Group (RTOG) 1112 trial 
(NCT01730937) protocol.24,25. In RTOG 
1112, 5-fraction SABR is prescribed 
to Child-Turcotte-Pugh class (CTP) A 
HCC, and the mean liver dose (MLD, 
defined as liver minus gross tumor vol-
ume [GTV]) determines the prescription 
dose based on an expected 5% incidence 
of RILD. If the MLD in the achieved 
plan is less than 13 Gy, the dose is 50 
Gy over 5 fractions; however, the dose 
is reduced as MLD increases. Caution 
must be employed for dose to adjacent 
stomach and bowel, and additional dose 
constraints are also provided within the 
RTOG 1112 protocol.

Logically, this schema can also be 
applied to CTP A patients with liver 
metastases or cholangiocarcinoma, 

as BED10 = 100 Gy (50 Gy in 5 frac-
tions) correlates with good tumor con-
trol.12,20 For patients with limited liver 
metastatic disease without underlying 
liver dysfunction, 60 Gy in 5 fractions 
(BED10 = 132 Gy) can be considered. 
Conversely, caution must be used in 
CTP B patients. A phase I/II trial re-
ported 38% grade 3 or higher toxicities 
for CTP B HCC patients treated with 
SABR.26 The use of dose escalation in 
this fragile population requires careful 
patient selection. For CTP C patients, 
hospice should be considered.

Image Guidance and  
Respiratory Management

Since increasing MLD correlates 
with increasing rates of RILD and lim-
its prescription dose and anticipated 
tumor control, attempts should be made 
to reduce the MLD.27,28 Custom immo-
bilization, image guidance and respira-
tory management allow reduction of the 
planning target volume (PTV) margin 
to about 5 mm. 

Patients with limited respiratory mo-
tion assessed by fluoroscopy, 4-dimen-
sional computed tomography (4D-CT), 
or cine magnetic resonance imaging 
(MRI) could be treated with an internal 
target volume (ITV) encompassing the 
respiratory excursion plus PTV expan-
sion for setup uncertainty. However, 
craniocaudal and anterior-posterior 
excursions of liver tumors of 2 to 3 cm 
have been reported with limited motion 
reduction by abdominal compression.29 
Therefore, appropriate motion man-
agement techniques must be available 
to treat patients with large respiratory 
motions. Example strategies include 
respiratory gating, breath-hold and ac-
tive tracking.30-32 Such systems include 
the Cyberknife Synchrony (Accuray, 
Sunnyvale, California) and Varian Re-
al-Time Position Management (Varian, 
Palo Alto, California) systems, which 
use cameras during therapy to track 
markers placed on the body’s surface 

that are correlated to the internal tumor 
position. A common alternative is 
Elekta’s Active Breathing Coordinator 
(Elekta, Stockholm, Sweden), which 
tracks and assists reproducible lung fill-
ing during treatment. 

These systems require internal cal-
ibration of the target position to the 
tracking system using fluoroscopy or 
breath-hold cone-beam CT at the begin-
ning of each treatment. For these x-ray-
based image guidance techniques, we 
strongly recommend target localization 
with radiopaque fiducials placed prior 
to simulation.33 This has been shown to 
lower the maximum setup error from 12 
mm (based on diaphragm position and 
bony landmarks) to 2 mm.34 Residual 
Lipiodal (Guerbet, Villepinte, France) 
injected from prior TACE treatments 
can also be used.35

Definition of the target requires in-
travenous (IV) contrast at the time of 
simulation and/or careful fusion to di-
agnostic scans. If gating or breath-hold 
is employed, simulation must include 
images for planning in that respiratory 
phase. 

Emerging Techniques
Recently, an MRI-guided radiation 

therapy system has become available 
for treatment of liver tumors.36,37 MRI 
simplifies the SABR procedure since it 
enables direct tumor visualization for 
planning and daily setup as well as near 
real-time imaging during treatment. 
An example of MRI-guided treatment 
is shown in Figure 1. Real-time visu-
alization of liver targets can be further 
enhanced by use of gadoxetate MRI 
contrast.38

In some settings, proton SABR 
could enhance normal liver sparing 
compared to conventional photon 
treatments given the reduced exit dose 
from the Bragg peak, reducing MLD 
and increasing the size or dose of treat-
ment.39,40 Nevertheless, respiratory 
motion offers more complications in 
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FIGURE 1. Example of liver stereotactic ablative radiation therapy (SABR) treatment with MR-guided radiation therapy. A 62-year-old woman 
with hepatocellular carcinoma, CTP class B, underwent 45 Gy in 5 fractions of SABR to an exophytic liver mass. Top left demonstrates a cor-
onal view of the gross tumor volume (GTV, red) expanded 5 mm to planning tumor volume (PTV, purple). The images shown were acquired in 
2 minutes on the Co-60 radiation therapy device at time of simulation, and the same quality 2-minute images are obtained each day for patient 
setup. Tumor within the red contour is seen as hyperintense compared to the liver. The top right image demonstrates the same tumor in coronal 
view with PTV in color-wash purple, the liver in color-wash yellow, and the planned dose distribution extending from the center (45 Gy, green-
blue line) to the outside (20 Gy, light blue line). The bottom images demonstrate the target and dose distribution for sagittal (bottom left) and 
axial (bottom right) views. The kidneys (light blue and light green), duodenum (dark green), spinal cord (yellow), and stomach with expansion 
(purple) are also contoured. During treatment, sagittal images are obtained of the GTV at a rate of 4 times per second with near real time auto-
mated target tracking and gating. If the GTV moves outside of the 5-mm tracking box, treatment is paused within milliseconds. Treatment is 
then resumed within milliseconds when the target returns within the tracking box.
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proton than photon treatment due to de-
rangement of the Bragg peak location 
caused by target depth variability. Use 
of proton SABR has been limited his-
torically because few proton therapy 
centers were equipped with respiratory 
gating; however, the number of capable 
centers is increasing.41,42 

Radiation-induced Liver Disease
Recognition of the liver’s parallel 

functional structure, reinforced by sur-
gical experience and refined through ad-
vances in Normal Tissue Complication 
Probability (NTCP) modeling, provides 
the physiologic justification for par-
tial-liver irradiation.43 When one-third of 
the normal liver parenchyma (standard-
ized to 700 cc of tissue) is protected from 
doses > 15 Gy in 3-5 fractions, the risk of 
RILD is < 5% for patients with baseline 
CTP A hepatic function.44

RILD is the most common dose-lim-
iting toxicity for radiation therapy of 
liver tumors with time-to-onset ranging 
from 2 weeks to 8 months post-treat-
ment. Classical RILD is characterized 
by fatigue, anicteric ascites, elevation of 
alkaline phosphatase out of proportion to 
other live enzymes, abdominal pain, and 
hepatomegaly. Nonclassical RILD pa-
tients present with jaundice and elevated 
serum transaminase. Given the overlap 
with liver failure of other causes, such 
as hepatitis, it is often difficult to directly 
ascribe to radiation therapy. Manage-
ment is supportive, similar to manage-
ment of other types of liver injury.

In practice, patients generally report 
transient loss of appetite and increased 
fatigue resolving by 3 months following 
SABR, with pretreatment quality of life 
maintained through 1 year.45

Conclusion
Numerous studies support SABR for 

the treatment of liver tumors such as 
unresectable hepatocellular carcinoma, 
intrahepatic cholangiocarcinoma, and 
liver metastases. Careful consideration 

of image guidance and respiratory 
management allows for minimization 
of normal liver treated, improving the 
safety, effectiveness, and size and 
number of tumors that can be treated 
successfully. Comparative studies to 
other techniques, improving radiation 
therapy delivery technologies, and ex-
panding indications, such as bridge to 
transplant in HCC or oligometastatic 
liver disease, may increase future utili-
zation of liver SABR.
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