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Esophageal cancer (EC) is one of 
the leading causes of cancer-re-
lated death worldwide.1 Approx-

imately 50% of newly diagnosed EC 
patients are not surgical candidates due 
to extensive locoregional disease, dis-
tant metastasis, and/or being medically 
unfit. Definitive chemoradiation (CRT) 
became a standard of care many years 
ago for nonsurgical patients based on 
results of the Radiation Therapy Oncol-
ogy Group (RTOG) 85-01 randomized 
trial that demonstrated superior overall 
survival (OS) with 50 Gy plus 4 cycles 
of 5-fluorouracil (5-FU) and cisplatin 
compared with 64 Gy alone; 5-year sur-
vival was 26% vs. 0%, respectively.2 
There is also an apparent benefit of 

concurrent chemotherapy in elderly 
EC patients.3,4 The standard radiation 
dose in nonoperable EC patients has 
not changed for decades ever since the 
Intergroup (INT) 0123 trial reported no 
survival benefit in escalating dose from 
50.4 Gy in 28 fractions to 64.8 Gy in 36 
fractions, both given with 4 cycles of 
5-FU and cisplatin.5 

It is important to recognize that these 
seminal trials were conducted many 
years ago using 2-dimensional (2D) 
x-ray radiation therapy (RT) prior to 
dramatic improvements in technology. 
Whereas generous treatment ports were 
used in the 2D treatment era, the devel-
opment of 3-dimensional conformal 
radiation therapy (3DCRT) and intensity- 

modulated radiation therapy (IMRT) has 
enabled highly conformal treatment de-
livery and the lowering of normal tissue 
dose.6-8 As opposed to x-rays, which ex-
ponentially deposit dose in tissue along 
the beam path resulting in exit dose in 
surrounding normal tissues (eg, heart and 
lungs), protons deposit more efficiently 
as they lose the majority of their energy 
near the end of their beam range as they 
come to rest. This results in a sharp rise 
in absorbed dose called the “Bragg peak” 
followed by a sharp dose falloff. Proton 
beam therapy (PBT) represents another 
step in the evolutionary ladder of radi-
ation technology.9 Lastly, present-day 
treatment planning techniques including 
heterogeneity corrections, high-quality 
image guidance including cone-beam 
computed tomography (CT), and the use 
of tighter margins have also contributed 
to reducing dose outside of the target  
volume.10,11 

Herein we review how contemporary 
radiation technologies provide oppor-
tunities for potential improvements in 
the therapeutic index, including both 
reduced toxicity and higher tumor  
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control, for nonoperable EC patients re-
ceiving definitive CRT. 

Reducing Cardiopulmonary Toxicity
Delivering RT to the esophagus is 

challenging due to its central location 
within the chest, surrounded by mul-
tiple critical structures, notably the 
lungs and heart. There is heightened 
awareness, particularly from outcomes 
of breast and lung cancer patients, that 
increasing heart and lung dose, even in 
the low dose range, can significantly in-
crease the risk of cardiopulmonary tox-
icity (CPT).12-14 As such, efforts have 
focused on evaluating whether modern 
radiation technologies can spare both of 
these critical organs, and whether any 
dosimetric differences are clinically 
meaningful. 

Intensity-Modulated Radiation 
Therapy

IMRT delivers improved confor-
mality and reduced normal organ dose 
compared to less sophisticated tech-
niques for EC patients as demonstrated 
by multiple treatment planning stud-
ies.15,16 A recently published analysis 
of 7 dosimetric studies demonstrated 
dramatic lung and heart sparing with 
IMRT vs. 3DCRT; for example, IMRT 
resulted in significantly lower average 
irradiated volume of the heart among 
patients treated to at least 50 Gy (mean 
difference: 4.78 cc [95% CI: 0.88-8.68], 
P = .02).17 

The ability of IMRT to minimize 
dose outside of the target volume ap-
pears to be clinically meaningful. A 
study published from the phase II/III 
SCOPE1 (Study of Chemoradiother-
apy in OesoPhageal cancer with Er-
bitux) trial found that higher OS was 
strongly associated with a higher con-
formality index and that plan quality 
was strongly related to receiving IMRT 
(vs. 3DCRT).18 Freilich et al reported 
reduced grade 3 or higher toxicity (OR 
0.51; P = 0.05), defined as any hospital-
ization, feeding tube, or > 20% weight 

loss, with IMRT vs. 3DCRT.19 An 
analysis of 676 patients treated at MD 
Anderson Cancer Center (MDACC) re-
ported significantly improved OS (HR 
0.72, p < .001) with IMRT compared 
with 3DCRT. Although there was no 
difference in cancer-related or pulmo-
nary-related death, patients receiving 
3DCRT had a significantly greater 
risk of cardiac death (5-year estimate, 
11.7% (3DCRT) vs. 5.4% (IMRT), 
Gray’s test, P = 0.0029).20 Lastly, an 
analysis of two large cancer center 
registries including over 2500 elderly 
patients further supports the advantage 
of IMRT; on propensity score inverse 
probability of treatment weighting mul-
tivariate analysis, IMRT was associated 
with less all-cause, other-cause, and 
cardiovascular mortality compared to 
3DCRT.21 

Despite these retrospective data sug-
gesting a large and significant benefit 
of IMRT, a small randomized trial from 
China of 60 patients reported significant 
improvements in complete response 
rate and reduction in lung V20 and V30 
in patients receiving IMRT, but did not 
report improvements in OS.22 However, 
comprehensive evaluation of cardi-
ac-related mortality was not performed. 

Collectively, these largely retrospec-
tive data suggest that IMRT should be 
considered over 3DCRT because of 
reduced CPT and potentially improved 
OS. There is a need to confirm these 
benefits in a prospective manner.

Proton Beam Therapy 
The published literature has demon-

strated benefits of PBT compared to 
x-ray therapy in sparing critical thoracic 
organs. Zhang et al compared passive 
scattering PBT with fixed-field IMRT 
plans prescribed to 50.4 Gy for 15 dis-
tal esophageal cancer patients.23 Com-
pared to IMRT plans, PBT plans had 
improved lung sparing at low-to-mod-
erate doses from V5-V20, as well as 
mean lung dose. Lung sparing was the 
greatest at the lowest dose levels; PBT 

reduced V5 lung dose relatively by 36% 
to 70% depending on the beam arrange-
ments. Heart V40 was more modestly 
reduced (up to 22% relatively) with 
PBT. Shiraishi et al published a detailed 
analysis of dose delivered to cardiac 
substructures in EC patients, conclud-
ing that PBT could deliver markedly 
reduced dose to many, but not all, of 
these substructures compared to x-ray 
techniques.24 

PBT delivered with pencil-beam 
scanning (PBS) offers increased dose 
conformality compared to passive scat-
tering technique. A study from MDACC 
demonstrated significant lung and heart 
sparing in the low-to-moderate range 
with various PBS-PBT beam arrange-
ments compared to IMRT.25 PBS-PBT 
delivered with a single posterior field 
(SPF) with volumetric rescanning has 
been proposed to minimize normal 
organ dose.26 Zeng et al from Univer-
sity of Washington demonstrated that 
when compared to anterior-posterior/
posterio-anterior (AP/PA) beams, the 
SPF approach significantly spared more 
heart by approximately 50%, and when 
compared to PA/left posterior oblique 
(PA/LPO) beams, the SPF approach sig-
nificantly spared more lungs by approx-
imately 40%. 

Although dosimetric superiority does 
not always translate into clinically sig-
nificant differences, the published liter-
ature demonstrates reductions in CPT 
with PBT (Table 1). Wang et al re-
viewed 444 patients treated with preop-
erative PBT (n = 72), IMRT (n = 164), 
and 3DCRT (n = 208) with concurrent 
chemotherapy.27 Pre-treatment lung 
capacity and radiation modality were 
found to be independent predictors of 
pulmonary complications. PBT-treated 
patients had the lowest rate of postoper-
ative pulmonary complications (14%) 
compared to those who received IMRT 
(24%) or 3DCRT (30%). However, 
only the PBT and 3DCRT differences 
were statistically significantly different, 
leaving up for debate whether there are 
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meaningful differences between PBT 
and IMRT. The authors concluded that 
the lung sparing from PBT was likely 
responsible for the decrease in pulmo-
nary complications since mean lung 
dose was found to correlate with pulmo-
nary complications. No differences in 
cardiac complications were observed. 
Investigators from the University of 
Tsukuba also reported reduced pul-
monary toxicity among PBT vs. x-ray 
patients, although they found reduced 
cardiac toxicity with PBT, in contrast to 
the MDACC study.28 

To further evaluate their findings of 
decreased CPT with PBT, MDACC 
pooled their data with two other aca-
demic institutions and analyzed a total 
of 580 lower esophageal/GEJ cancer 
patients (111 PBT, 255 IMRT, 214 
3DCRT).29 The type of radiation mo-
dality was associated with CPT on 
multivariate analysis. Specifically, 
PBT patients had significantly less 
pulmonary toxicity compared with 
3DCRT patients (16% vs. 40%) al-
though there was no statistically sig-
nificant difference compared to IMRT 
patients (24%). As opposed to the initial 
MDACC study, this pooled analysis 
reported fewer cardiac complications 
in PBT patients when compared to 
3DCRT patients (12% vs. 27%), al-
though there was no difference when 
compared to IMRT patients (12%). 

Reducing Hematologic Toxicity	
There is increasing interest in study-

ing the effects of radiation modality on 
hematologic toxicity (HT). While most 
of the body’s bone marrow (BM) is in 
the pelvis, approximately 35% of the 
active BM resides in the thoracic ver-
tebrae (TV).30 The risk of developing  
≥ grade 2 HT such as leukopenia and 
neutropenia has been associated with 
BM irradiation in both pelvic and tho-
racic RT patients.31-34 

In a dosimetric planning study, 
IMRT and PBT were recently reported 
by a group from the United Kingdom 

as superior to 3DCRT in overall BM 
sparing.35 PBT, however, was the only 
modality to provide significant sparing 
in the very loswest dose range (ie, bone 
V10). Warren et al performed a study 
including 12 patients with mid-esopha-
geal tumors and compared the BM (TV, 
sternum, scapulae, ribs, clavicles) and 
TV (T1-T12) doses among 3DCRT, vol-
umetric-modulated arc therapy (VMAT) 
IMRT, simultaneous integrated boost 
(SIB)-VMAT, PBS-PBT, and TV-spar-
ing (TVS) VMAT plans.35 Only the PBS 
plan showed clinically significant spar-
ing of the bone V10, V20 and mean dose 
compared to all techniques. However, 
the PBS plans showed no dosimetric 
advantage over the TVS-VMAT plans 
for any TV dose-volume metrics. While 
the clinical relevance of these results  
remains unclear, this study provides  
evidence that PBT can substantially re-
duce HT, depending on the bone OAR 
being spared.  

Radiation-induced adverse effects 
on the immune system include severe 
lymphopenia and impaired recruit-
ment of tumor-infiltrating lymphocytes 
(TILs), which have been correlated 
with unfavorable clinical outcomes.36-39 

Because lymphocytes are exquisitely 
radiosensitive to low dose (ie, V5-
V15), a priority should be to minimize 
radiation exposure especially to large 
volumes of the blood and, therefore, 
lymphocytes that circulate through the 
heart and lungs at any given time.40,41 

The importance of this was supported 
by a retrospective analysis of 711 non-
small cell lung cancer patients who 
received definitive RT and found an 
association between lung V5, lympho-
cyte nadir, and survival.42 Shiraishi et al 
compared the risk of radiation-induced 
grade 4 lymphopenia between PBT 
and IMRT patients with EC (n = 136 in 
each group) using propensity matching 
based on key clinical characteristics.40 
PBT patients had markedly less fre-
quent grade 4 lymphopenia compared 
to IMRT patients (17.6% vs. 40.4%;  

p < 0.0001). On multivariate analysis, 
PBT was found to be an independent 
predictor for grade 4 lymphopenia (OR 
0.29; 95% confidence interval, 0.16 to 
0.52; p < 0.0001). However, grade 4 
lymphopenia was not found to be an in-
dependent predictor for poorer OS.  

Dose Escalation 
Rationale for Dose Escalation 

Local control (LC) is poor for EC 
patients treated with definitive CRT.2,5 
Adenocarcinomas and squamous cell 
carcinomas both recur in the original 
gross tumor volume in about 40% of 
patients.43 Radiation dose escalation 
for such patients remains controver-
sial based on the results of the afore-
mentioned INT trial in which patients 
in the high dose arm had worse OS.5 
However, 7 of the 11 deaths during RT 
occurred prior to delivery of 50.4 Gy, 
making it impossible for dose escala-
tion to be responsible for the higher 
mortality rate. Also, with longer fol-
low-up, there was a significantly higher 
number of deaths not attributable to EC 
in the high dose arm compared with the 
standard dose arm (13 vs. 3; P < 0.01). 
Hence, the results of this trial cannot 
be used to conclude that radiation dose 
escalation does not offer clinical bene-
fit, largely because of the technological 
limitations of the era in which it was 
conducted. For now, we can only spec-
ulate whether the results of this trial 
would have differed if modern tech-
niques were used.44 

The era of 3D planning has seen in-
creasing interest in exploring whether 
dose escalation specifically to gross 
disease offers therapeutic benefit in 
nonoperable EC patients. This strategy 
is based on studies showing that at least 
75% of local recurrences after definitive 
CRT prescribed to 50.4 Gy occur within 
the gross tumor volume (GTV) and 
not within electively treated regions,  
suggesting that selective delivery of 
higher dose to gross disease may im-
prove outcomes.45,46 
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Intensity-Modulated Radiation 
Therapy

IMRT can selectively increase dose 
to the GTV while reducing dose to nor-
mal organs.6,47A potential benefit of 
IMRT delivered with SIB is that frac-
tion sizes > 2 Gy prescribed to the GTV 
may have a radiobiological advantage 
in counteracting accelerated repopula-
tion and more effectively eliminating 
cancer stem cells.48 Early results from 
a Chinese phase 2 trial that prescribed 
concurrent chemotherapy plus 63 Gy 
to the GTV and 50.4 Gy to the PTV, 
all in 28 fractions using IMRT-SIB, 
were encouraging; locoregional con-
trol at 3 years was 67.5% and no grade 
4-5 toxicity occurred.49 Investigators 
from MDACC subsequently published 
outcomes of a phase 1/2 trial that em-
ployed IMRT-SIB over 28 fractions 
with 63 Gy being the maximum toler-
ated dose.50 After a median follow-up 
of 13.3 months, 11 (29%) patients 
experienced local recurrence and the 
rate of acute esophagitis was similar 
to historical control. When compared 
to 97 similar nonoperable EC patients 
who received a total of 50.4 Gy, there 
was significantly improved LC in pa-
tients who received a boost. This trial 
included patients mostly treated with 
IMRT, but a minority received PBT.

Several ongoing trials are evaluating 
the role of dose escalation based on tumor 
response to initial therapy as determined 
by PET/CT. A phase 1 trial from China 
(NCT03113214) is evaluating PET/
CT-directed hyperfractionated radiation 
dose escalation and concurrent carbo-
platin/paclitaxel with total doses ranging 
from 57.2 to 93.2 Gy prescribed to re-
sidual tumor after an initial 50 Gy. The 
SCOPE2 phase 2/3 trial (NCT02741856) 
uses PET/CT response after initial cispla-
tin/capecitabine to 50 Gy in 25 fractions 
vs 60 Gy in 25 fractions.  

Proton Beam Therapy
The University of Tsukuba was the 

first institution to publish clinical out-

comes using PBT for esophageal cancer 
in 1994, which was given in a dose-esca-
lated fashion.51 Koyama et al treated 15 
patients with superficial and advanced 
esophageal cancer (93% SCC) using 
definitive hypofractionated passive scat-
tering PBT alone to 80.4 gray equivalent 
(GyE) with a single AP field either as a 
boost after 3DCRT or as a single full 
PBT course. OS at 5 years was 27% with 
67% LC for advanced tumors. Over the 
next several years the same institution 
updated their clinical experience with 
hypofractionated passive scattering PBT 
in a series of publications.52-54 A hypo- 
fractionated regimen and single AP or 
AP/PA beam approach were employed 
primarily due to resource allocation and 
technology limitations. For locally ad-
vanced tumors, 5-year LC was 29% to 
43% and 5-year OS was 13% to21% in 
these series.

There is continued interest in esoph-
ageal dose escalation with PBT. Two 
ongoing trials from University of Flor-
ida and University of Pennsylvania are 
investigating the potential toxicity reduc-
tion and safety of PBT escalation in both 
unresectable and resectable esophageal 
cancer. A phase 2 trial from University 
of Florida (NCT03234842) is treating 
patients to 59.4 GyE with concurrent 
carboplatin/paclitaxel and PBT. Patients 
who decline or are not able to receive 
PBT will be treated on a comparator 
x-ray cohort. The primary endpoint of 
this study is to assess the differences in 
lung function as defined by reduction in 
diffusing capacity of the lung for carbon 
monoxide (DLCO) between PBT and 
x-rays. A phase 1 study from University 
of Pennsylvania (NCT02213497) is sys-
tematically investigating the safety of 
simultaneous integrated boost dose esca-
lation with PBT in the preoperative set-
ting with 5 dose levels starting at 53.75 
GyE and escalating to 62.50 GyE in 25 
fractions. Dose-limiting toxicity occur-
ring prior to surgery will be the primary 
endpoint to inform on a recommended 
phase 2 dose.

Brachytherapy
Dose escalation using intraluminal 

brachytherapy as a boost in EC pa-
tients treated with curative intent is not 
commonly used, although it may ben-
efit select patients. A phase 2 RTOG 
trial of 49 EC patients, nearly all with 
SCC who received chemoradiation to 
50 Gy followed by a brachytherapy 
boost, demonstrated no difference in 
survival or local control compared to 
the historical control.55 Furthermore, a 
high incidence of life-threatening tox-
icity (24%) or treatment-related death 
(10%) occurred. A Japanese random-
ized trial that included patients with 
SCC of the esophagus who after 60 Gy 
received a boost with external beam 
vs. brachytherapy demonstrated no dif-
ference in overall survival.56 However, 
those with tumors < 5 cm in length had 
more than twice the cancer-specific sur-
vival (64 vs. 31.5%; p = 0.025). 

In conclusion, dose escalation using a 
brachytherapy boost should not be rec-
ommended for all EC patients, although 
it could be reasonable for a subset with 
limited disease, as endorsed by pub-
lished guidelines from the American 
Brachytherapy Society.57  

Patient Selection for Dose 
Escalation

These data suggest that radiation dose 
escalation may be effective using both 
x-rays and protons, although all patients 
may not benefit from higher doses. Vari-
able responses to definitive CRT are 
well documented, with some patients 
achieving a complete response while 
others have persistent disease after 50 
to 50.4 Gy. For instance, Ishikawa and 
colleagues observed more local recur-
rences (38%) in patients with residual 
disease seen on endoscopy after 50 GyE 
who were then dose escalated to 64 to 
70 GyE compared with those with no 
residual disease who were prescribed 
60 GyE (5%).58 We are gaining a better 
understanding of treatment response pre-
dictors that include, but are not limited 
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to, tumor stage,59 imaging parameters,60 
and intrinsic tumor radiosensitivity,61 al-
though robust clinical decision-making 
tools are lacking to identify patients for 
whom radiation dose escalation could 
be considered. This is clearly an area in 
need of further study. 

Conclusion
Although there is general awareness 

that modern radiation technologies  
reduce normal organ dose while per-
mitting safe dose escalation in non-
operable EC patients, consensus is 
lacking about how these technologies 
should be routinely employed in the 
clinic. Well-designed clinical trials are 
clearly needed to guide clinical decision 
making in this regard, several of which 
are being planned (NCT01102088) or 
underway (NCT01512589). 
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