
18       n        APPLIED RADIATION ONCOLOGY                                    www.appliedradiationoncology.com March  2021

applied radiation oncology

Proliferation Saturation Index to Characterize 
Response to Radiation Therapy and Evaluate 
Altered Fractionation in Head and Neck Cancer

Dr. Zahid is a postdoctoral fellow, Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, 
Tampa, FL. Dr. Mohamed is an instructor, and Dr. Fuller is an associate professor, both in the Department of Radiation Oncology, The 
University of Texas MD Anderson Cancer Center, Houston, TX. Dr. Latifi is an assistant member, Dr. Rishi is a resident physician, Dr. Har-
rison is the chair and a senior member, Dr. Moros is a senior member and chief of medical physics, and Dr. Caudell is an associate member, 
all in the Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL. Dr. Enderling is an associ-
ate member, Department of Integrated Mathematical Oncology, and  Department of Radiation Oncology, H. Lee Moffitt Cancer Center & 
Research Institute, Tampa, FL. Disclosure: Dr. Caudell reports grants, personal fees and other fees from Varian, outside of the submitted 
work. Dr. Enderling reports grants from NIH/NCI Physical Sciences in Oncology Network (1 U01 CA244100-01), while conducting the 
study. Dr. Zahid and Dr. Enderling have a patent “Personalized Radiation Therapy” (63/010,327) pending. Dr. Fuller reports grants from 
NIH, NIBIB, Elekta, NSF, University of Texas Health Science Center at San Antonio, and the American Association of Physicists in Medi-
cine. Dr. Moros reports grants/payments from Varian outside of the submitted work. No other authors have conflicts of interest to disclose, 
and no part of this article has been previously published elsewhere. 

Mohammad U. Zahid, PhD; Abdallah S.R. Mohamed, MD; Kujtim Latifi, PhD;  
Anupam Rishi, MD; Louis B. Harrison, MD; Clifton D. Fuller, MD, PhD;  
Eduardo G. Moros, PhD; Jimmy J. Caudell, MD, PhD; Heiko Enderling, PhD 

Abstract  
Objective: To personalize radiation therapy dose fractionation protocols, it will be necessary to first quantitatively describe 

tumor volume reduction dynamics and subsequently simulate the results of alternative fractionation schemes.
Methods and Materials: The proliferation saturation index (PSI) model of tumor volume dynamics was fit to weekly tumor 

volume data from computed tomography scans of n = 39 head and neck cancer patients who received 66 to 70 Gy in standard 
daily fractions or with accelerated fractionation. Using the outputs of this model, we additionally simulated how these patients 
would respond to hyperfractionation with 1.2 Gy fractions twice a day. We identified PSI values that would improve responses 
and outcomes to hyperfractionation compared to single daily fractions. 

Results: The PSI model fit volumetric tumor response dynamics data with high accuracy (R2 = 0.92) using patient-specific 
PSI values. Simulations of an alternative fractionation protocol demonstrated that a subset of patients with intermediate PSI 
values could potentially have improved locoregional control by switching to hyperfractionation.

Conclusions: This is the first demonstration of the PSI model fitting data from head and neck cancer patients, and the results 
suggest a benefit from alternative fractionation schemes for a selected subset of patients. 
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Head and neck cancers (HNC) 
are commonly treated with de-
finitive radiation therapy (RT) 

with or without systemic therapy, with 
RT being the single most common on-
cologic treatment.1,2 Few inroads have 
been made to synergize biological and 
quantitative approaches with radiation 
biology and radiation oncology meth-
odologies to personalize and optimize 
RT. Standard treatment is 56 to 70 Gy 
in 1.8 to 2 Gy fractions once daily with 
or without concurrent chemotherapy,1 
derived from maximum tolerable dose 
concepts and dose-escalation trials pre-
mised on a “one-size-fits-all” RT dose. 
Current radiation oncology clinical 
practice is that every patient receives 
the same treatment, planned strictly 
on pre-radiation American Joint Com-
mittee on Cancer (AJCC) TNM stage 
(Tumor size, lymph Node involvement, 
Metastasis presence), without regard 
to individual tumor dynamics that may 
influence RT outcome. Oropharyngeal 
cancer still represents significant het-
erogeneity within the same stage group. 
Thus, it remains unclear why some pa-
tients with similar clinical stage, treated 
with identical RT dose and dose frac-
tionation, are cured while others are not. 
There is a strong need for personalized 
RT for individual patients.3 

Adaptive RT delivery has been sug-
gested primarily for anatomical and 
spatial adjustments during the course 
of treatment.4 Although alternative 
fractionation schemes have been tested 
in clinical trials with modest improve-
ments from altered fractionation, it 
is possible that these benefits may be 
offset by increased toxicities across 
the cohort.5 This sets up the need to be 
able to identify specific patients who 
may benefit from alternative fraction-
ation protocols. To rigorously evaluate 
every possible radiation dose and dose 
fractionation is experimentally and 
clinically unfeasible.6 However, the 
burgeoning field of integrated math-
ematical oncology may make such 

analyses possible. The integration of 
quantitative approaches could provide 
novel, reliable biomarkers based on 
mathematics and patient-specific dis-
ease dynamics to guide RT treatment 
personalization.7-9

Mathematical modeling in radiation 
oncology has a long history, with the lin-
ear-quadratic (LQ) model,10-14 biolog-
ically effective dose (BED),15-19 tumor 
control probability,20–22 and normal tis-
sue complication probability (NTCP)23-25 
being widespread in research and prac-
tice. Recent mathematical modeling 
and simulation studies of the canonical 
radiobiological principles have led to the 
concept of temporally feathered radia-
tion therapy (TFRT). In TFRT, different 

treatment plans are developed for each 
weekday of fractionated radiation to 
spare organs at risk in fractionated ra-
diation schedules.26,27 In close collab-
oration with experimental biologists, a 
mathematical model of glioma response 
to radiation has been calibrated and val-
idated to develop and subsequently ex-
perimentally confirm radiation protocols 
that optimally counteract stem cell de- 
differentiation dynamics.28

One mainstay of mathematical mod-
eling in radiation oncology is to simulate 
the volume regression profiles during 
RT,29-33 and to predict responses to a va-
riety of dose and dose fractionation pro-
tocols.33-37 Previous analyses revealed 
that parameters of complex models may 

Table 1. Patient Characteristics

		  Moffitt Cancer Center  	 MD Anderson Cancer Center  
		  Cohort	 Cohort 
		  n = 17	 n = 22
Primary Site	 n (%)	 n (%)
	 Bilateral	 1 (5.9%)	 0 (0%)
	 Base of tongue	 0 (0%)	 8 (36.4%)
	 Gum	 0 (0%)	 1 (4.6%)
	 Oral cavity	 2 (11.8%)	 0 (0%)
	 Oropharynx	 14 (82.4%)	 0 (0%)
	 Soft palate	 0 (0%)	 1 (4.6%)
	 Tongue	 0 (0%)	 2 (9.1%)
	 Tonsil	 0 (0%)	 10 (45.5%)
T stage	
	 T1	 3 (17.7%)	 7 (31.8%)
	 T2	 8 (47.1%)	 8 (36.4%)
	 T3	 4 (23.5%)	 2 (9.1%)
	 T4	 0 (0%)	 5 (22.7%)
	 TX	 2 (11.8%)	 0 (0%)
N stage	
	 N0	 1 (5.9%)	 0 (0%)
	 N1	 1 (5.9%)	 2 (9.1%)
	 N2	 13 (76.5%)	 20 (90.9%)
Metastases?	
	 No	 17 (100.0%)	 22 (100.0%)
	 Yes	 0 (0%)	 0 (0%)
Treatment	
	 RT alone	 0 (0%)	 11 (50.0%)
	 Chemo + RT	 17 (100.0%)	 11 (50.0%)
p16 status	
	 Positive	 6 (35.3%)	 16 (72.7%)
	 Negative	 5 (29.4%)	 5 (22.7%)
	 Unknown	 6 (35.3%)	 1 (4.6%)
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be impossible to determine with limited 
clinical data,38 suggesting that the num-
ber of patient-specific parameters must 
be kept to a minimum to avoid overfit-
ting and model uncertainty. To this ex-
tent, the novel concept of a proliferation 
saturation index (PSI) has been previ-
ously introduced to simulate non-small 
cell lung cancer patient-specific response 
to RT with a single parameter.39,40 Math-
ematical analysis revealed that PSI can 
robustly describe clinical data for a wide 
range tumor growth models.41 Here we 
show that the PSI model can simulate 
head and neck cancer patient-specific 
responses to RT with data from two clin-
ical cohorts from Moffitt Cancer Center 
and MD Anderson Cancer Center. We 
then use the model to run in silico com-
parisons of a hyperfractionation protocol 
to identify which patients may most ben-
efit from hyperfractionated radiation.

Methods and Materials 
Patient Data

A total of 39 head and neck cancer 
patients were treated with 66 to 70 Gy 
RT with and without concurrent che-
motherapy. Seventeen patients were 
treated at Moffitt Cancer Center where 
they received a total of 66 to 70 Gy RT 
in 2 Gy weekday fractions with concur-
rent chemotherapy, and the remaining 
22 patients were treated at MD Ander-
son Cancer Center where they received 
a total of 66 to 70 Gy RT (2 or 2.12 Gy 
weekday fractions or with accelerated 
fractionation) with half of the patients 
receiving concurrent chemotherapy. 
The patient cohort was comprised of 
different primary sites (oropharyngeal, 
laryngeal, nasopharyngeal), HPV sta-
tus, and clinical stage (stage T1-T4). 
Patient characteristics for the two co-
horts are detailed in Table 1.

Tumor volumes were delineated on 
weekly cone-beam computed tomog-
raphy (CBCT) or CT-on-Rails system 
combining a GE Smart Gantry CT 
scanner (GE Healthcare) and a 2100EX 
linear accelerator (Varian) (256 total 
CT-scan-derived tumor volumes). It 

should be noted that contouring tumor 
volumes from CBCT scans is highly 
dependent on adequate image quality. 
Insufficient contrast, obstruction of the 
tumor by other patient anatomy, and 
other factors may prevent delineation 
of tumor volumes. We only included 
tumor volumes from patients who had 
contourable images. Nearly 50% of the 
patients considered for the study had 
inadequate image quality and were thus 
excluded. Locoregional control cen-
sored up to 5 years was abstracted as 
outcome measure and determined by bi-
opsy confirmation or imaging sufficient 
to initiate additional treatments.

Mathematical Model
Tumor growth was modeled as logis-

tic growth as governed by the following 
differential equation:

where λ is the intrinsic volumetric 
growth rate [day-1], V is the gross tumor 
volume [cc], and K is the tumor carry-
ing capacity [cc], which is defined as 
the maximum tumor volume that the 
local tissue can support. We have pre-
viously proposed characterizing indi-
vidual patient tumor growth rates with 
the PSI, as opposed to the patient-spe-
cific growth rates.41 PSI is defined as the 
ratio of the initial tumor volume at the 
start of RT, V0, to the tumor carrying 
capacity:

PSI is defined between 0 and 1 and PSI 
represents the fraction of nonprolifera-
tive cells in the tumor (Figure 1).

Response to radiation was mod-
eled using the linear-quadratic (LQ) 
model:13

where SF(d) is the surviving fraction 
of cells after receiving a radiation dose, 
d [Gy]; and α [Gy-1] and β [Gy-2] are 
radiosensitivity coefficients. This is 
connected to the change in tumor vol-
ume by assuming that only proliferat-
ing cells are killed by radiation, in line 
with the Norton-Simon hypothesis that 
the rate of tumor regression under ther-
apy is proportional to the tumor growth 
rate.42-44 The change in tumor volume 
with each radiation fraction is modeled 
as follows:

where  is the volumetric death term 
per radiation fraction that is coupled to 
the LQ model as follows:

Implementation and Optimization
Custom scripts were written in MAT-

LAB (Mathworks) to simulate volume 
trajectories given inputs of fractionation 
schedule, dose per fraction, λ, PSI, α, 
and α/β. To evaluate the ability of the 
model to fit the patient data, an optimiza-
tion script was written using the particle 
swarm optimization function from the 
MATLAB Global Optimization Tool-
box to find patient-specific PSI values, 
given a particular (λ,α) pair for the en-
tire cohort, assuming α/β = 10 Gy. The 
optimal values for λ and α were found 
by performing a full grid search over λ 
∈ (0.02, 0.18) day-1 with a step size of 
0.025 and α ∈ (0.04, 0.25) Gy-1 with a 
step size of 0.01 to find the (λ,α) pair that 
minimized the mean square error to the 
patient data across the entire cohort for 
the first 4 weekly measurements.

Results
The parameter optimization iden-

tified that the values of λ = 0.07 day-1 
and α = 0.09 Gy-1 best fit the tumor 
volume dynamics across the entire pa-
tient cohort. Although the values of λ 
and α were the same for all patients, the  
patient-specific PSI values allowed the 
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FIGURE 1. Schematic depiction of proliferation saturation index (PSI). Assuming a fixed growth rate and initial tumor size, an increasing PSI 
indicates both a decreasing proliferative cell fraction and tumor carrying capacity. Green circles indicate proliferating cells; black circles nonpro-
liferating cells; dashed circle the putative carrying capacity.

FIGURE 2. Model fit results with uniform λλ and α values across the cohort and patient-specific PSI values. (A) Representative fitting results for 3 
patients with 3 different PSI values, using λλ = 0.07 day-1 and αα = 0.09 Gy-1. The green markers indicate weekly tumor volumes at the start of RT; 
black markers show weekly tumor volumes during RT; blue curves show the model fits. (B) Correlation of simulated volumes (derived from the 
model fits) to the measured tumor volumes for all 39 patients. Green markers indicate individual weekly time points and the black line has a slope 
of 1. The R2 value shows the degree of correlation to this line and thus the accuracy of the simulations. (C) Box plot of fitted PSI values with individ-
ual values indicated. The center line indicates the median; the bottom and top edges of the box show the 25th and 75th percentiles, respectively. 
(D) PSI as a function of initial tumor volume, showing no significant correlation. Black line indicates the best-fit linear regression, with R2 indicated. 
P-value is shown for comparison against the null model. (E) PSI as a function of percent tumor volume change by week 4 of RT, showing significant 
correlation. Black line indicates the best-fit linear regression, with R2 indicated. P-value is shown for comparison against the null model.
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model to fit both shallow-volume regres-
sion dynamics (high PSI) and rapid-vol-
ume reduction responses (low PSI) with 
high accuracy (Figure 2A). Across the 
entire cohort, the model fit the weekly 
tumor volumes with high confidence; R2 
= 0.92 (Figure 2B). Notably, while PSI 
was allowed to range from 0 to 1, only 
values > 0.5 were obtained from the fit-
ting procedure using the optimized λ and 
α values, which indicates that the model 
was not overconstrained or overfitting 
the data (Figure 2C). 

To assess the clinical significance of 
the model parameters, we compared pa-
tient-specific clinical measures with the 
fitted model parameters. Initial tumor 
size did not correlate with PSI (Figure 
2D), but percent change in tumor volume 
after 4 weeks of RT showed a strong cor-
relation with PSI (Figure 2E). 

To translate tumor volume reduc-
tion to long-term patient outcomes, we 
tested midtreatment tumor volume re-
duction as a predictor for locoregional 
control (LRC). We found that the me-
dian tumor volume reduction at week 
4 (-ΔV = 32.2%) perfectly separates 
out those patients who had early lo-
coregional recurrence (Figure 3). This 
is comparable to the recent observation 

that midtreatment nodal decrease  
≥ 43% in oropharyngeal cancer is prog-
nostic for locoregional control.45

Given that the standard protocol with 
2 Gy weekday fractions results in a sub-
set of patients recurring locoregionally, 
we simulated an alternative hyperfrac-
tionation scheme of 1.2 Gy fractions 2 
times a day (1.2 Gy BID). These simu-
lations were performed using the previ-
ously optimized λ, α values across the 
cohort, and patient-specific PSI values. 
As expected, these simulations pre-
dicted that all the patients would have 
increased tumor volume reduction due 
to the higher total dose (Figure 4A). 
However, only a subset of patients with 
intermediate PSI ([0.835-0.91], Case II: 
12/38 patients, 32%) is predicted to have 
sufficient marginal increase in tumor 
volume reduction to cross the previously 
determined volume-reduction threshold 
for LRC, indicating a potential to bene-
fit from a switch to hyperfractionation 
(Figure 4B). On the other hand, patients 
with low PSI values have highly prolif-
erative and radiation-sensitive disease 
(PSI < 0.835; Case I: 15/38, 39%), with 
both 2 Gy QD and 1.2 Gy BID yielding 
midtreatment tumor volume reductions 
> 32.2% indicating no additional benefit 

from hyperfractionation. On the other 
extreme, patients with high PSI values 
have less proliferative and more radio-
resistant tumors (PSI > 0.91; Case III: 
12/38, 32%), and in this case neither 
fractionation protocol provides robust 
midtreatment tumor volume reduction. 

Discussion
Herein, we presented a simple math-

ematical model based on proliferation 
saturation index, PSI, that was able to 
characterize head and neck cancer pa-
tient-specific volume changes to frac-
tionated RT with only 1 patient-specific 
parameter with high accuracy. Notably, 
the growth rate is assumed to be constant 
across the entire cohort, and all interpa-
tient heterogeneity is captured in the PSI 
values. Of interest, initial tumor size, and 
thusly T stage, did not correlate with PSI 
and midtreatment response. The need to 
only determine one patient-specific pa-
rameter may facilitate future patient-spe-
cific modeling and predictions. It may 
be possible to estimate patient-specific 
PSI values using midtreatment volume 
reduction, which was shown to correlate 
with PSI. Furthermore, these modeling 
results demonstrate that treatment re-
sponse dynamics may provide valuable 

FIGURE 3. Median tumor volume reduction at week 4 of RT can stratify for locoregional control. (A) Weekly tumor volumes normalized by 
initial tumor volume before start of RT during the course of treatment. Patients with eventual locoregional failure are highlighted in purple. The 
indicated median volume reduction at week 4 of RT perfectly separates the locoregional failures at week 4. (B) Kaplan-Meier survival plot for 
locoregional control (LRC) separated by percent tumor volume reduction at 4 weeks of RT. 
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insights to understanding the nature of 
the disease. These results complement 
previous analysis of pretreatment tumor 
volume dynamics associated with out-
comes in patients with oropharyngeal 
cancer.46 

Additionally, since the tumor volu-
metric death term was coupled to the 
LQ model, we were able to simulate the 
potential response to an alternative frac-

tionation scheme of hyperfractionation 
with 1.2 Gy BID. Although hyperfrac-
tionation is not widely used in clinical 
practice to treat squamous cell head and 
neck cancers, large meta-analyses have 
shown an 8% difference in overall sur-
vival at 5 years post-treatment compared 
with standard fractionation.5,47 However, 
this benefit may be offset by long-term 
toxicities from the increased overall dose 

and logistical difficulties in delivering 
multiple fractions a day. Mathematical 
models of tumor volume dynamics may 
eventually serve as part of a framework 
to identify patients who would benefit 
from hyperfractionation over standard 
fractionation.  

It is important to note that the α val-
ues identified in this study are for radio-
sensitivity for the entire tumor volume 

FIGURE 4. In silico comparison of 2 radiation fractionation schemes for the entire cohort using previously optimized parameters. (A) Normalized 
tumor volume trajectories for original fractionation scheme (2 Gy QD) compared to an alternative fractionation scheme (1.2 Gy BID) for repre-
sentative patients from the 3 possible cases (I. Both original and alternate fractionation are below the LRC volume reduction threshold. II. The 
original fractionation scheme is above the LRC threshold and the alternate fractionation scheme is below the threshold. III. Both fractionation 
schemes are above the threshold). Black solid lines indicate 32.2% tumor volume reduction at week 4 of RT. (B) Waterfall plot of percent tumor 
volume reduction for both radiation fraction schemes, sorted by degree of tumor volume reduction. Gray bars indicate percent tumor volume 
reduction with 2 Gy QD; green bars show percent tumor volume reduction for 1.2 Gy BID; horizontal black line shows the 32.2% tumor volume 
reduction threshold correlated with LRC; and red box highlights patients calculated to cross the volume reduction threshold correlated with LRC 
with the alternate fractionation scheme.
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and are not directly comparable to ra-
diosensitivity parameters derived from 
clonogenic assays in vitro. With the 
correlation of locoregional control with 
a volumetric reduction threshold at 4 
weeks of RT, we used these simulations 
to identify which patients could bene-
fit from hyperfractionation to achieve 
robust midtreatment tumor volume re-
ductions that correlate with locoregional 
control. This study demonstrates math-
ematical-modeling-derived PSI as a ra-
dioresponse biomarker in head and neck 
cancer and supports previous findings in 
non-small cell lung cancer that patients 
with intermediate PSI values may benefit 
from hyperfractionation protocols.

Of interest mathematically, it is diffi-
cult to accurately identify a unique (λ,α) 
parameter pair that fits the entire cohort, 
as other parameter pairs with the same 
λ/α ratio would yield similar model fits. 
Thus, it is important to accurately iden-
tify either the volumetric growth rate 
before the start of therapy or tumor ra-
diosensitivity. This can potentially be ac-
complished with just two pre-treatment 
CT scans spaced a few weeks apart, such 
as at diagnosis and at treatment planning 
or simulation, similar to a previous study 
of tumor volumetric growth velocity.46 
Radiation sensitivity index, RSI, may be 
a candidate for radiosensitivity that will 
be explored in future studies.3 The alter-
native fractionation simulations are also 
limited by the canonical radiobiological 
assumptions of the LQ model. It will be 
important to verify whether this method 
of accounting for different dose sizes 
holds up in similar data with different 
doses per fraction.

Notably, our model cannot capture 
transient increases in tumor volume 
during the first few weeks of RT. These 
types of small increases in tumor vol-
ume, or pseudo-progression, in early 
weeks of treatment have been seen in 
the other studies. In a recent study of 
44 node-positive oropharyngeal can-
cers,45 the authors saw changes in nodal 
volume ranging from a 74.3% volume 

increase to a 73.6% volume decrease 
at day 10 of chemoradiation; a 48% 
volume increase to a 94.9.% volume de-
crease at day 20; and a -18.1% volume 
increase to a 95.6% volume decrease 
at day 35. This can potentially be ad-
dressed by building a model with a de-
layed effect of RT.

Conclusion
We acknowledge that this analysis 

was performed on a small number of 
patients (n = 39), but we would like to 
note that our methodology of analyz-
ing longitudinal tumor volumes (6 to 
8 CT scans per patient) increases total 
data points to n = 256 CT scans, sig-
nificantly strengthening the analysis. 
The usability of this model in making 
patient-specific predictions and clini-
cal recommendations still requires in-
dependent parameter calibration and 
validation in independent datasets with 
larger and more homogenous cohorts.48 
However, the results presented here 
are important steps in the mathematical 
modeling of RT response in this cancer 
type and demonstrate the potential for 
testing alternative treatment schemes in 
silico to inform the design of clinical tri-
als for personalizing RT prescriptions.
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