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Radiation therapy is a pillar of 
oncologic care for various solid 
malignancies in the curative 

and palliative settings. Technologic 
advancements spanning over a century 
have now provided opportunities for 
radiation to be delivered to the target 
of interest with high accuracy and pre-
cision. In this regard, implementation 
of 3-dimensional (3D) conformal radi-
ation therapy and intensity-modulated 
radiation therapy (IMRT) coupled with 
daily image guidance have enhanced 
the achievable therapeutic ratio over 
a variety of dosing and fractionation 
schemes.1

Similar to medical oncology, radi-
ation delivery has been guided by the 
fine balance of normal tissue toxicity 
and sustainability of durable tumor 
control. It is by these historical obser-
vations in which radiation dose has 
been chosen across a spectrum of ma-
lignancies and, to this day, remains the 

current dosing scheme for many can-
cers. Although it is generally accepted 
that tumors of the same stage, anatomic 
location and histology vary in their re-
sponses to radiation therapy, our field 
delivers treatment under a premise of 
established “clinical tolerance guide-
lines” rather than robust, tumor-spe-
cific, dose-response profiles.

In the last several decades, substan-
tial advancements have been made in 
understanding the molecular catalog, 
metabolic networks and influence of the 
microenvironment on growth, spread 
and treatment response of various tumor 
types, yet employing these data in clin-
ical decision-making has yet to inform 
the practice of radiation oncology. Fur-
thermore, high-throughput analyses of 
clinically employed imaging modali-
ties in radiation delivery has provided 
further opportunity to noninvasively 
categorize intrinsic tumor features 
and stratify patient outcomes. Further 

understanding of host and tumor dif-
ferences with these interrogative ap-
proaches may provide the opportunity 
to precisely deliver radiation therapy 
beyond spatial and anatomic features, to 
one guided by intrinsic tumor biology. 

Interrogation of Tumor Genomic 
Blueprints and Exploitation for 
Radiation Therapy

A major focus of personalized on-
cology has been the molecular charac-
terization of tumors to identify unique 
druggable targets and generate higher 
order tumor classification methods to 
translate into clinical care.2 Numer-
ous high-throughput “-omics” analy-
ses, which encompass transcriptional, 
proteomic, methylation, metabolomic 
and sequencing data, have provided 
unprecedented insight into the underly-
ing biology of various human tumors.3 
These efforts have been largely per-
formed within The Cancer Genome 
Atlas (TCGA) and International Cancer 
Genome Consortium (ICGC) programs, 
although several academic and commer-
cial organizations now perform Clinical 
Laboratory Improvement Amendments 
(CLIA)-certified analyses of tumor tis-
sue to complement these efforts.4

The beginnings of precision oncol-
ogy began with prior laboratory work, 
which identified the first cancer-related 
gene mutation in HRAS several decades 
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Cancer Type	 Number of Genes	 Training	 Validation	 Reference(s) 
	 in Signature	 Cohort(s)	 Cohort(s)

Breast	 34	 343 patients	 605 patients and additional	 25 
			   matched 524 patients

Cancer Agnostic 	 474 refined to 10 by systems 	 48 cell lines 	 852- Breast	 15, 17, 109-113, 149 
(NCI-60 cell line panel)	 biology methods		  73- Pancreas 
			   270 -GBM TCGA 
			   60- NSCLC 
			   92- HNSCC 
			   14- Rectal 
			   12- Esophagus 
			   42- Melanoma	

Breast	 51	 16 cell lines and	 228 patients	 22 
		  343 patients

Prostate	 24	 196 patients	 330 patients	 24

Breast	 4	 191 patients	 112 patients	 23

Breast	 248	 168 patients	 139 patients	 107

Cancer Agnostic 	 31	 60 cell lines	 1045-TCGA Breast	 99-101 
(NCI-60 cell line panel)			   463- TCGA GBM 
			   263- Glioma	

Head and Neck	 5 (miRNA)	 2 lymphoblastic 	 435-HNSCC TCGA	 102 
		  cell lines with ATM  
		  alteration from single patient 		

Head and Neck (HPV-)	 13	 86- TCGA HNSCC	 44 HNSCC patients	 103 
		  32 HNSCC cell lines	 63 HNSCC (HPV-) 
		  128- TCGA HNSCC (HPV-)	 5 HNSCC cell lines	  
			   59 cell lines (NCI-60)	

Head and Neck (HPV-)	 7	 130 patients	 121 patients	 104

Esophageal	 41	 152 patients	 31 patients	 26

Gastric	 11	 371- TCGA Gastric	 371 patients 	 108 
			   (cross-validated from training)	

Soft Tissue Sarcoma	 26	 253- TCGA Sarcoma	 101 patients 	 105 
			   (cross-validated from training)	

Cervical	 7	 25 patients	 N/A	 106

Key: ATM = ataxia telangiectasia mutated, GBM = glioblastoma multiforme, HNSCC = head-and-neck squamous cell carcinoma, HPV = human 
papilloma virus, miRNA = microRNA, NCI = National Cancer Institute, NSCLC = non-small cell lung cancer, TCGA = The Cancer Genome Atlas

Table 1. Selected Studies Developing Gene Signatures That Infer Intrinsic Radiosensitivity

ago.5 Following this discovery, other so-
matic alterations have been identified in 
various tumors, which has formulated 
the notion that genetic alterations may 
be targeted in specific tumors. Notably, 
analysis of genomic data from patient 
tumors has provided opportunity to de-
velop targeted agents against various 
proteins controlling kinases to epigenetic 
modulators.6 Additionally, the develop-

ment of therapeutic monoclonal antibod-
ies (mAb) has transformed oncologic 
care, most recently by modulating the 
host immune response to tumors.7 Many 
of these targeted agents have been em-
ployed in unselected metastatic cohorts, 
although tumor profiling has been able  
to separate responders from nonrespond-
ers based on intrinsic tumor features. 
Various trials employing molecular 

profiling have begun, though to date, no 
prospective trial has demonstrated a ben-
efit to selecting targeted agents based on 
tumor genomic make-up.8 

In contrast to targeted therapy selec-
tion, determination of the optimal radi-
ation regimen may require a different 
approach. Ionizing radiation does not 
have a distinct “target,” but distrib-
utes its effect in the cell via a stochas-
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tic manner causing damage to DNA, 
organelles and cellular membranes.9 
Additionally, at the tumor level, ra-
dioresponsiveness is influenced by 
other treatment parameters, including 
dose-volume relationships, total dose, 
fractionation pattern and type of radia-
tion. In support of the latter, recent stud-
ies highlighted molecular differences 
in tumor cell radiosensitivity between 
dense and sparse ionizing rays10 and 
various dose per fraction regimens.11 

Some of the first studies evaluating 
a molecular basis for radiation sen-
sitivity were related to normal tissue 
toxicity in patients with alterations in 
ataxia telangiectasia mutated (ATM),12 
which supported a DNA damage basis 
for intrinsic radiosensitivity. Numer-
ous observations in single nucleotide 
polymorphism (SNP) analyses and 
experimental manipulations of DNA 
damage repair (DDR) modulators have 
supported this model, yet no clinically 
actionable genetic alteration has been 
validated.4 Interestingly, patients with 
rare genetic syndromes driven by com-
promised DDR pathways demonstrate a 
spectrum of responses, suggesting that a 
single alteration in core DDR machin-
ery may not be a sole determinant of ra-
dioresponsiveness.13 Yard et al profiled 
more than 500 cell lines and identified 
interconnectedness between DDR pro-
tein alterations and genomic stability, 
which governed intrinsic radiosensitiv-
ity.14 This study underscores the poly-
genic trait of radiation sensitivity. 

Attempts to model the polygenic na-
ture of radiation sensitivity have con-
tinued to emerge in recent years. One of 
the first studies to address this question 
was by Eschrich et al, who identified a 
cancer-agnostic diverse gene network, 
which modeled the cellular survival fol-
lowing 2 Gy in 48 cancer cell lines.15 
This network was reduced to 10 hub 
genes, from which a multigene expres-
sion signature was derived, termed the 
radiosensitivity index (RSI). The RSI has 
predicted for clinical outcomes in various 

patient cohorts treated with radiation,16 
and recently Scott et al demonstrated 
that substitution of a tumor-specific RSI 
value for the alpha variable in the linear 
quadratic model derives an actionable 
tumor feature termed the genomically 
adjusted radiation dose (GARD),17 which 
can stratify clinical outcomes in patients 
treated with radiation.18,19

Others have hypothesized that tumor 
type-specific evaluation of radiation 
sensitivity may provide more robust 
classifiers compared to cancer-agnostic 
approaches, although some have sug-
gested that despite heterogeneous sites 
of tumor origin, a common transcrip-
tional program may regulate radiosen-
sitivity.20,21 Table 1 is a nonexhaustive 
list of gene signatures developed to 
infer radiosensitivity. For instance, 
in breast cancer, Speers et al derived a 
transcriptional signature based on sur-
vival after 2 Gy in breast cancer cell 
lines and a patient cohort that predicted 
for local control in patients treated with 
radiation,22 and Tramm et al identified a 
4-gene signature that predicted for post-
mastectomy radiation benefit.23 Sim-
ilarly, the postoperative radiotherapy 
outcome score (PORTOS), a 24-gene 
signature in prostate cancer, has been 
validated as a predictive tool for assess-
ing distant metastasis risk following 
postprostatectomy radiation.24 

Combining gene signatures repre-
senting distinct biological processes 
may also improve the robustness of 
clinical classifiers. For example, Cui et 
al developed independent radiosensitiv-
ity and antigen processing/presentation 
signatures in breast cancer cohorts and 
found that integration of these signa-
tures improved outcome stratification.25 
Zhang et al also found that integrating 
a 31-gene signature with the RSI, both 
derived similarly from the NCI-60 cell 
line panel, improved predictive ability 
in esophageal cancer patients.26 

Interestingly, many signatures pro-
posed to delineate intrinsic radiosensi-
tivity show little overlap, if any, with 

regard to gene sets. Is this due to a 
broadly conserved transcriptional pro-
gram resulting from genotoxic stress or 
is there redundancy in the information 
of gene signatures? Despite publication 
of various gene signatures representing 
diverse biologic processes (eg, hypoxia, 
epithelial-mesenchymal transition, cell 
proliferation), prior studies have identi-
fied similarities in the predictive ability 
of diverse gene sets in a single dataset for 
similar clinical endpoints. For instance, 
Fan et al found a high concordance for 
nonoverlapping gene signatures in breast 
cancer, suggesting a common biologic 
underpinning.27 

Few studies investigating relation-
ships between gene signatures and clin-
ical outcomes prove the specificity of 
the derived signature by testing against 
a negative control signature. A study by 
Venet et al found that gene signatures 
unrelated to cancer biology (ie, effect of 
postprandial laughter, skin fibroblast lo-
calization, social defeat in mouse brains) 
were associated with overall survival in 
a breast cohort and found that only 18 of 
47 (40%) signatures from the literature 
had the ability to outperform random sig-
natures of similar size.28 

Functional redundancy of many gene 
signatures argues that robust statistical 
methods, including random permutation 
of genes selected to represent signature 
modules, are needed to avoid spurious 
associations with clinical outcomes.29 As 
the number of gene signatures continues 
to grow, it is important to interrogate the 
biology of individual genes composing 
the signature since sophisticated bioin-
formatics analyses can overcome real bi-
ologic differences and ultimately lead to 
no downstream utility.30

There are several important limita-
tions to consider when implementing 
genomic-based strategies in clinical 
medicine. A major concern is the use 
of single-biopsy-site, tumor-profiling 
data to infer overall tumor biology. 
Tumors have significant spatial and 
temporal heterogeneity,31,32 often with 



12       n        APPLIED RADIATION ONCOLOGY                                    www.appliedradiationoncology.com December  2019

GENOMICS AND RADIOMICS: TOOLS TO SEE THE UNSEEN TO PERSONALIZE RADIATION THERAPY

applied radiation oncology

SA-CME (see page 8)

opposing prognostic gene expression 
profiles or targetable mutations in dif-
ferent tumor regions. Although hetero-
geneity is evident, selection of many 
targeted therapies and clinically useful 
gene signatures is informed by sin-
gle-region analyses,33 suggesting that 
the calculated signal in the readout may 
represent central biology in the tumor. 
Tumor profiling adds an additional 
level of complexity compared to sig-
natures derived from cell cultures due 
to heterogeneous cell populations con-
tributing to tumor composition. Aran 
et al found that noncancerous cell pop-
ulations contribute to gene expression 
profiles and following adjustment for 
tumor purity, variation in differentially 
expressed genes and pathway enrich-
ments were lost; this study emphasizes 
the need to correct for tumor purity.34 

Another important feature to con-
sider is the assumption that a snapshot 
of tumor biology derived from a single 
biopsy is representative of biology as 
treatment progresses. Myriad evidence 
demonstrates adaptive changes follow-
ing exposure to various treatments.35,36 
For example, radiation has been shown 
to induce alternative splicing,37 which 
has the potential to increase transcrip-
tome diversity. Another example of 
adaptation is in prostate cancer cells ex-
posed to enzalutamide, which results in 
differential expression of genes regulat-
ing inflammation and various metabolic 
processes.38 Thus, assuming an iso-effect 
response to each fraction of radiation 
may not provide a complete picture of 
the dynamicity in a responding tumor.39 

Lastly, and of utmost importance, is 
the required external validation of de-
rived signatures before adoption into 
clinical practice. Rigorous testing in 
prospective randomized clinical trials 
or prospectively collected retrospective 
analyses of previous phase III trials are 
required to demonstrate robustness of 
the signature outside of the training and 
nonprospectively collected validation 
cohorts. The utility of genomic-based 

approaches in radiation has lagged as 
none of the aforementioned signatures 
have withstood scrutiny of the protec-
tive regulatory barriers needed to safe-
guard patients from implementation in 
clinical decision-making. 

Radiomics: A Noninvasive Means  
to Assess Tumor Biology

Routine medical imaging, including 
computed tomography (CT), magnetic 
resonance imaging (MRI) or positron 
emission tomography (PET), is para-
mount to the diagnosis, treatment and 
follow-up of cancer patients.40 Radia-
tion oncologists approach data supplied 
by these anatomical and functional 
images differently than diagnostic ra-
diologists, in that images are used to 
plan dose distributions that cover gross 
disease or regions at risk for spread. 
Although qualitative assessment by 
radiologists provides useful diagnos-
tic information, each image contains a 
plethora of features that may be used for 
precise radiation delivery and treatment 
selection. 

Radiomics refers to high-throughput 
extraction of quantitative image features 
from standard-of-care images, such as 
CT, MRI and PET followed by relation 
to biologic or clinical endpoints.41-43 
This noninvasive process allows for the 
ability to describe tumor characteristics 
while accounting for spatial and tem-
poral heterogeneity.44,45 Radiomics has 
the capacity to detect medical imaging 
phenotypes that are reflective of tumor 
features at the cellular level, with a prime 
example being 18-fluorodeoxyglucose 
PET (FDG-PET) representing glu-
cose uptake.41 Also, data obtained from 
quantitative image analysis can identify 
novel tumor features that complement 
clinical or genetic characteristics, thus 
improving the understanding of tumor 
biology.43 Radiomics has potential to be 
a powerful tool to personalize clinical- 
decision algorithms, and novel methods 
continue to emerge for utilization in radi-
ation therapy. 

The workflow of radiomics involves 
several steps, including image acqui-
sition, segmentation of the regions of 
interest (ROI), extraction of descriptive 
features, predictive modeling, and vali-
dation; each of these steps pose unique 
challenges described further below.42,45

Image Acquisition
The first step of radiomics involves 

acquiring standard-of-care images. 
Although lack of standardized imag-
ing protocols across institutions does 
not significantly affect clinical utili-
zation, these diverse protocols do im-
pact extraction of quantitative features. 
Heterogeneous source data increase 
the probability for noise interference, 
calibration error and unfruitful analy-
ses. For this reason, nonstandardized 
multi-institutional radiomics can pose 
major challenges. There have been 
recent attempts to address this issue 
through standardization of the imaging 
protocol, including the Quantitative 
Imaging Biomarkers Alliance (QIBA) 
and the Quantitative Imaging Network 
(QIN).46,47

Segmentation of Regions  
of Interest

The next step is segmentation of 
ROIs to determine which pixels/vox-
els within the image are to be analyzed. 
This step has been called the most chal-
lenging and contentious component 
of radiomics, and the segmentation 
process varies greatly across studies.42 
The process can be conducted manu-
ally, which can introduce bias through 
user variability48 or can potentially be 
semi- or fully automated with newer ap-
proaches.49,50 

Extraction of Descriptive Features
Radiomic features can be divided 

into spatial (static) and temporal (dy-
namic) features. Static features are 
derived from shape, volume, voxel in-
tensity and texture, whereas dynamic 
features represent changes in kinetics 
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with time-varying protocols.51 Seman-
tic features, commonly used in radiol-
ogy to qualitatively describe images 
(eg, spiculation, cavitation, necrosis), 
can be time-consuming to capture and 
do not provide more granular data for 
statistical modeling. Ongoing efforts 
with machine-learning methods strive 
to increase inter-reader agreement, 
lower variance, and augment more 
rapid data acquisition for semantic 
features.52 Agnostic features, which 
quantitatively describe heterogeneity 
within the ROI (eg, wavelets, textures, 
histogram characteristics) can provide 
statistical inter-relationships between 
voxels and reveal hidden patterns. 
These features can be calculated by 
various texture matrices (eg, gray-level 
co-occurrence, neighborhood gray tone 
difference matrix); for a more thorough 
description of feature calculation please 
see the recent article by Rizzo et al.53 

The feature extraction process is 
variable across institutions with re-
cent attempts to address this issue. The 
Image Biomarker Standardization Ini-
tiative (IBSI) is an international col-
laboration that works to standardize 
extraction of image biomarkers.54 Ad-
ditionally, an open platform termed 
Computational Environment for Ra-
diological Research (CERR) has been 
introduced to improve reproducibility, 
speed and clinical integration of radio-
mics research.55,56 Other open-source 
software to extract features includes 
RaCaT and LIFEx.57,58 

Predictive Modeling  
and Validation

Following feature extraction, data 
interrogation via manual statistical 
analysis or machine learning, is con-
ducted to test for relationships between 
features, clinical endpoints or other 
questions of interest in a training model. 
Model building from a small sample 
size relative to the number of features 
can result in reduced accuracy and risk 
of overfitting. This potentially may be 

obviated by predetermining subsets of 
features to analyze or removing highly 
correlated variables, yet there are no-
table statistical considerations when 
analyzing large datasets.59,60 Model val-
idation, both internal and external, is a 
necessity for radiomics studies. Ideally, 
a successful model will perform simi-
larly in training and validation cohorts.  
Beyond the scope of this article, Park 
et al provide a useful guide to assess 
model performance in radiomics.61 
When constructing predictive models 
with multivariable analysis, guidelines 
from transparent reporting of a multi-
variable prediction model for individ-
ual prognosis or diagnosis (TRIPOD)  
can help maintain reproducibility and 
transparency.62 

Clinical Applications
Radiomics can significantly impact 

clinical decision-making within oncol-
ogy,42,45,63 including radiation.64 Due 
to the vast number of recent radiomics 
studies, indicated by a 50% increase in 
published studies between 2017 and 
2018,65 we have highlighted a subset 
with potential to personalize radiation 
therapy (Table 2). 

Prognostication
Numerous studies have shown the 

utility of radiomics in stratifying clini-
cal outcomes. Aerts et al demonstrated 
a CT-based radiomics signature, which 
captured heterogeneity and had signifi-
cant prognostic value in lung and head-
and-neck cancer.41 Another recent study 
found that a subset of features extracted 
from planning CT and cone-beam CT 
(CBCT) scans are interchangeable, and 
CBCT-based signatures were prognos-
tic for lung cancer survival.66 

Treatment Response 
Radiomics has the potential to 

predict radiation therapy response. 
A recent study demonstrated that a 
PET-based model developed with ma-
chine-learning improved prediction 

of primary refractory disease in Hod-
gkin lymphoma.67 Also, Abdollahi et 
al developed an MRI-based model that 
predicted radiation therapy response 
for prostate cancer patients.68 Another 
CT-based model based on lymph node 
phenotypic features was predictive of 
pathologic response after neoadjuvant 
chemoradiation in lung cancer and out-
performed primary tumor feature sets.69 
Zhang et al combined 5 MRI radiomic 
features to distinguish radiation ne-
crosis from tumor progression in brain 
metastasis treated with the Gamma 
Knife (Stockholm, Sweden).70 Sim-
ilarly, a T2-weighted MRI classifier 
outperformed qualitative assessment in 
diagnosing complete response in rectal 
cancer patients after neoadjuvant chemo-
radiation.71 Another CT-based signature 
outperformed physicians in identifying 
early changes associated with local re-
currence after stereotactic ablative radia-
tion therapy (SABR) for early stage lung 
cancer.72 Clearly, radiomics modeling in 
assessing treatment response is an area 
with future utility. 

Treatment Planning
Another exciting area is the potential 

to improve radiation treatment planning 
and target selection. Quantitative image 
analysis allows for the identification 
of spatially explicit and distinct subre-
gions, or habitats, of the tumor.73 These 
habitats may be the result of unique 
intratumor selection mechanisms and 
have been shown to have some clini-
cal significance. For example, Cui et 
al demonstrated that MRI multiregion 
analysis outperformed conventional 
prognostic factors in glioblastoma74 and 
Wu et al showed subregions in PET and 
CT images were also more robust in 
predicting lung tumor control than com-
monly used prognostic parameters.75 
Rathore et al developed an MRI signa-
ture, which provided in vivo estimation 
of spatial extent and pattern of tumor 
recurrence within peritumoral edema 
of glioblastoma; these high-risk areas 
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Cancer	 Imaging	 Study	 Number	 Conclusion of Analysis 	 Clinical	 Reference 
	 Modality	 Endpoint(s)	 of Patients		  Application

Prostate 	 MRI	 Diagnosis	 381	 MRI-based radiomics models outperformed 	 Diagnosis	 114 
				    PI-RADSv2 in distinguishing cancerous vs non- 
				    cancerous tissue or  high- vs low-grade disease		

NSCLC	 PET	 OS	 Training: 262 	 FDG-PET radiomics from tumors and nodes 	 Prognostication	 115 
			   Validation: 50	 can improve prognostication for NSCLC		

GBM	 MRI	 OS	 79	 Multiregion quantitative analysis of MR images	 Prognostication	 74 
				     has prognostic utility for GBM and outperformed  
				    conventional prognostic factors		

NSCLC	 CT	 OS, FFDM, LRC	 107	 Radiomics features change due to radiation 	 Prognostication	 116 
				    therapy and end of treatment values may be  
				    indicators of treatment response		

Prostate	 MRI	 Biochemical 	 74	 Radiomic analysis of MRI predicted biochemical	 Prognostication	 117 
		  recurrence		  recurrence following radiotherapy		

GBM	 MRI	 OS, PFS	 Training: 126	 Radiomic analysis had significant prognostic	 Prognostication	 118 
			   Validation: 165”	 value for OS and PFS in patients with recurrent  
				    GBM receiving bevacizumab		

Rectal	 MRI	 LR, DM, DFS	 Training: 67	 Delta radiomics via MRI predicted clinical	 Prognostication	 119 
			   Validation: 34	 outcomes after chemoRT and surgery as an 
				    independent prognostic factor		

GBM	 MRI	 PFS, OS	 181	 Radiomics improved prognostication for patients	 Prognostication	 98 
				    beyond molecular, clinical, and standard imaging		

GBM	 MRI	 OS	 Training: 75	 Deep-learning-based radiomics model was able	 Prognostication	 120 
			   Validation: 37	 to generate a prognostic imaging feature-based  
				    biomarker for OS prediction		

NSCLC	 CT	 OS, RFS, LR-RFS	 59	 CT-based radiomics prognosticates OS and	 Prognostication	 121 
				    progression as early as 3 months after SBRT

NSCLC	 PET/CT	 OS, DSS, RC	 150	 Radiomics predicts control and survival for 	 Prognostication	 122 
				    patients with lung cancer treated with SBRT	

Head and Neck	 PET/CT	 LRC, DM	 300	 Models combining radiomic and clinical 	 Prognostication	 123 
				    variables had significant prognostic utility for  
				    LRR and DM in patients treated with chemoRT	

NSCLC	 CT	 OS	 Training: 132	 Subset of radiomic features from CT and CBCT	 Prognostication	 66 
			   Validation: 62 	 images are interchangeable and a previously 
			   and 94	 described radiomics signature is prognostic  for OS

NSCLC	 PET/CT	 DM	 Training: 70	 PET imaging characteristics were significantly	 Prognostication	 75 
			   Validation: 31	 prognostic for the development of distant metastasis  
				    in patients with early stage NSCLC	

Esophageal	 CT	 OS	 36	 Post-treatment texture analysis was predictive 	 Prognostication	 124 
				    of survival, and the combination of pretreatment  
				    texture parameters and maximum wall thickness  
				    performed better than morphologic tumor response	

Key: chemoRT = chemoradiation, CT = computed tomography, CBCT = cone-beam CT, DFS = disease-free survival, DM = distant metastasis, 
DSS = disease-specific survival, DCE-MRI = dynamic contrast-enhanced MRI, EGFR = epidermal growth factor receptor, FFDM = freedom from 
distant metastasis, GBM = glioblastoma multiforme, HNSCC = head and neck squamous cell carcinoma, HPV = human papilloma virus, IMRT 
= intensity-modulated radiotherapy, LR = local recurrence, LRC = locoregional control, NSCLC = non-small cell lung cancer, MRI = magnetic 
resonance imaging, OS = overall survival, pCR = pathologic complete response, PET = positron emission tomography, PFS = progression-free 
survival, PI-RADS = Prostate Imaging-Reporting and Data System, RC = regional control, RFS = relapse-free survival, SBRT = stereotactic body 
radiation therapy

Table 2. Selected Radiomics Studies with Potential to Personalize Radiation Therapy Delivery
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Cancer	 Imaging	 Study	 Number	 Conclusion of Analysis 	 Clinical	 Reference 
	 Modality	 Endpoint(s)	 of Patients		  Application

GBM	 MRI	 OS	 32	 MRI spatial variations defined regional habitats in 	 Prognostication	 125 
				    GBMs, and the distribution of these varied significantly  
				    among the different survival groups	

Cervical	 PET, MRI	 LRC	 Training: 69	 Radiomics from MRI and PET predicted recurrence	 Prognostication	 126 
			   Validation:33	 and LRC with higher prognostic power than clinical  
				    parameters	

NSCLC	 CT	 Molecular 	 57	 Radiomic features from preoperative CT images were	 Prognostication	 127 
		  discrimination		  significantly associated with mutational profiles in	 Radiogenomics 
		  OS		  lung squamous cell carcinoma		

Head and Neck	 CT	 Molecular 	 Training: 93	 Heterogeneity of HNSCC tumor density is	 Prognostication	 95 
		  discrimination	 Validation: 56	 associated with LC after chemoRT and HPV status	 Radiogenomics		  
		  LC	  			 

Prostate	 CT	 Gleason score	 342	 CT-based radiomics model was able to accurately	 Prognostication	 128 
				     distinguish high risk from low risk and Gleason 	 Radiogenomics 
				    score  >7 vs 3+4 vs 4+3		

Head and Neck	 PET/CT	 Molecular	 Training:  474	 PET/CT-based radiomic signature was significantly	 Prognostication	 41 
NSCLC	  	 discrimination 	 Validation:  545	 prognostic for OS; radiomic features significantly	 Radiogenomics 
		  OS		  associated with different gene sets		

Nasopharyngeal	 MRI	 Therapy response	 Training: 100	 MRI radiomics predicted response and survival and	 Prognostication	 129 
			   Validation: 23	 in combination with clinical data, showed excellent	 Treatment Response 
				     predictive performance		

Hepatocellular	 CT	 LR	 106	 A robust radiomic signature (one signal feature) 	 Prognostication	 130 
				    predicted LR and OS after radiation	 Treatment Response	

Colorectal	 CT	 Molecular 	 64	 Combining contrast-enhanced CT radiomics with	 Radiogenomics	 97 
		  discrimination		  gene expression and histopathologic factors 
		  OS, PFS		  provided improved prognostication	

Head and Neck	 PET/CT	 Molecular 	 53	 Combining p16 and Ki-67 staining with PET/CT	 Radiogenomics	 94 
		  discrimination		  textural features helps determine PD-L1 expression	

Renal cell	 CT	 Molecular 	 45	 Machine-learning based quantitative CT texture	 Radiogenomics	 131 
		  discrimination		  analysis predicted PBRM1 mutation status	

GBM	 MRI	 Molecular 	 Training: 69	 Preop MRI features predict for PTEN mutation	 Radiogenomics	 96 
		  discrimination	 Validation: 40	  	

NSCLC	 CT	 Molecular 	 298	 CT-based radiomics of lung adenocarcinomas	 Radiogenomics	 93 
		  discrimination		  predicted presence of EGFR mutations in Asians	

Prostate	 MRI	 Molecular 	 17	 Radiomic features correlated with gene expression	 Radiogenomics	 132 
		  discrimination	

Breast	 MRI	 Proliferation	 377	 Quantitative radiomics features from DCE-MRI 	 Radiogenomics	 133 
				    were associated with Ki67 expression	

Breast	 MRI	 Molecular 	 922	 Machine learning radiomics model, based upon	 Radiogenomics	 91 
		  discrimination		  DCE-MRI features, predicted for receptor status	

Key: chemoRT = chemoradiation, CT = computed tomography, CBCT = cone-beam CT, DFS = disease-free survival, DM = distant metastasis, 
DSS = disease-specific survival, DCE-MRI = dynamic contrast-enhanced MRI, EGFR = epidermal growth factor receptor, FFDM = freedom from 
distant metastasis, GBM = glioblastoma multiforme, HNSCC = head and neck squamous cell carcinoma, HPV = human papilloma virus, IMRT 
= intensity-modulated radiotherapy, LR = local recurrence, LRC = locoregional control, NSCLC = non-small cell lung cancer, MRI = magnetic 
resonance imaging, OS = overall survival, pCR = pathologic complete response, PET = positron emission tomography, PFS = progression-free 
survival, PI-RADS = Prostate Imaging-Reporting and Data System, RC = regional control, RFS = relapse-free survival, SBRT = stereotactic body 
radiation therapy

Table 2. Selected Radiomics Studies with Potential to Personalize Radiation Therapy Delivery (continued)
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Cancer	 Imaging	 Study	 Number	 Conclusion of Analysis 	 Clinical	 Reference 
	 Modality	 Endpoint(s)	 of Patients		  Application

Breast	 MRI	 Molecular 	 84	 Radiomic image phenotypes were strongly	 Radiogenomics	 134 
		  discrimination		  associated with the triple negative subtype	

Breast	 MRI	 Molecular 	 47	 Quantitative analysis of MR imaging identified	 Radiogenomics	 135 
		  discrimination		  associations with activation of various molecular 
				     pathways (tyrosine kinase signaling, immune)	

NSCLC	 PET	 Molecular 	 348	 EGFR appears to drive metabolic tumor phenotypes	 Radiogenomics	 92 
		  discrimination		  that are captured in PET images, whereas KRAS  
				    mutations do not	

Prostate	 MRI	 Toxicity	 30	 Early structural change analysis may contribute 	 Toxicity	 136 
				    to predict postradiotherapy fracture	

NSCLC	 CT	 Toxicity	 32	 Radiomic features can classify and predict who 	 Toxicity	 137 
				    will develop immunotherapy-induced pneumonitis	

Esophageal	 CT	 Toxicity	 106	 Radiomics can provide a quantitative, individualized 	 Toxicity	 79 
				    measurement of patient lung tissue reaction to  
				    radiation and risk of pneumonitis	

Nasopharyngeal	 CT	 Toxicity	 35	 Radiation-induced acute xerostomia can be predicted 	 Toxicity	 81 
				    by saliva amount and CT changes	

NSCLC	 CT	 Toxicity	 14	 Radiomics features correlated with physician-scored	 Toxicity	 80 
				    post SBRT lung injury and showed a significant dose- 
				    response relationship	

Nasopharyngeal	 CT	 Toxicity	 21	 Volume and textural feature changes on CT during 	 Toxicity	 82 
				    radiation treatment predict for  parotid shrinkage	

Head and Neck	 CT	 Toxicity	 Training: 22	 Mid-treatment parotid gland changes evidenced by	 Toxicity	 83 
			   Validation: 4	 CT radiomic analysis substantially improved the  
				    prediction of late radiation-induced xerostomia	

Breast	 MRI	 Subclinical 	 146	 Preoperative MRI textural features improved the	 Treatment Planning	 138 
		  disease		  prediction of sentinel lymph node metastasis	

Prostate	 MRI	 Gleason score 	 48	 Multiparametric MRI-based radiomics was able to	 Treatment Planning	 139 
		  prediction		  generate stable Gleason score probability maps	

GBM	 MRI	 Regions at risk	 90	 Multiparametric MRI pattern analysis assists with 	 Treatment Planning	 76 
				    in vivo estimation of the spatial extent and pattern  
				    of recurrence in peritumoral edema, which can  
				    guide resection or radiation dose escalation

Esophageal	 CT	 Subclinical 	 197	 CT-based radiomics signature significantly	 Treatment Planning	 140 
		  disease		  associated with lymph node metastasis	

Prostate	 MRI	 Regions at risk	 23	 Radiomics-based framework is able to generate 	 Treatment Planning	 78 
				    a targeted focal treatment radiation plan	

Head and Neck	 MRI	 LRC	 14	 MRI subvolumes at baseline, which persist during 	 Treatment Planning	 77 
				    early course of chemoRT and predict for failure,  
				    could identify opportunity for local dose boost	

Bladder	 CT	 Subclinical 	 Training: 80	 Preoperative CT-based radiomic nomogram	 Treatment Planning	 141 
		  disease	 Validation: 38	 accurately predicted lymph node metastasis	

Key: chemoRT = chemoradiation, CT = computed tomography, CBCT = cone-beam CT, DFS = disease-free survival, DM = distant metastasis, 
DSS = disease-specific survival, DCE-MRI = dynamic contrast-enhanced MRI, EGFR = epidermal growth factor receptor, FFDM = freedom from 
distant metastasis, GBM = glioblastoma multiforme, HNSCC = head and neck squamous cell carcinoma, HPV = human papilloma virus, IMRT 
= intensity-modulated radiotherapy, LR = local recurrence, LRC = locoregional control, NSCLC = non-small cell lung cancer, MRI = magnetic 
resonance imaging, OS = overall survival, pCR = pathologic complete response, PET = positron emission tomography, PFS = progression-free 
survival, PI-RADS = Prostate Imaging-Reporting and Data System, RC = regional control, RFS = relapse-free survival, SBRT = stereotactic body 
radiation therapy

Table 2. Selected Radiomics Studies with Potential to Personalize Radiation Therapy Delivery (continued)
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may be optimal targets for dose intensi-
fication.76 Similarly, Wang et al utilized 
dynamic contrast-enhanced MRI to 
identify subvolumes of primary head-
and-neck tumors at increased risk for 
local failure.77 Recently a multimodule 
framework called radiomics-based tar-
geted radiation therapy planning (Rad-
TRaP) was created, which employs 

MRI data, deformable image registra-
tion, and a feature-based dose plan.78

Toxicity
Radiomics also has the capacity to 

assess for and predict radiation-induced 
toxicity. Cunliffe et al identified changes 
in serial CT features that are associated 
with radiation dose and development of 

radiation pneumonitis.79 Another study 
identified CT-based texture features sig-
nificantly correlated with dose and lung 
injury severity after SABR.80 Others 
have found that observed changes in ra-
diomics-based measures (delta radiom-
ics) over the course of radiation therapy 
predict for parotid gland shrinkage and 
xerostomia.81-83

Table 2. Selected Radiomics Studies with Potential to Personalize Radiation Therapy Delivery (continued)

Cancer	 Imaging	 Study	 Number	 Conclusion of Analysis 	 Clinical	 Reference 
	 Modality	 Endpoint(s)	 of Patients		  Application

Head and Neck	 PET/CT	 Segmentation	 40	 PET/CT-based textural characterization 	 Treatment Planning	 142 
				    discriminates between normal and abnormal tissue	

Rectal	 MRI	 pCR	 114	 T2-weighted sequence analysis is more predictive 	 Treatment Response	 71 
				    of pCR after chemoRT vs qualitative assessment	

Brain Metastases	 PET	 Toxicity vs 	 47	 Textural feature analysis may have potential to	 Treatment Response	 143 
		  Progression		  discriminate brain metastases and radiation injury	

NSCLC	 CT	 LR	 45	 Radiomics detects early changes associated with 	 Treatment Response	 72 
				    LR that are not typically considered by physicians	

Brain Metastases	 MRI	 Toxicity vs 	 87	 Delta radiomics can distinguish between radiation	 Treatment Response	 70 
		  Progression		  necrosis and tumor progression after radiosurgery

Prostate	 MRI	 Gleason score 	 35	 Machine-learning-based models predicted IMRT	 Treatment Response	 68 
		  and stage		  response, Gleason score and stage	

Cervical	 MRI,  PET	 Tumor response 	 21	 Tumor heterogeneity varies between patients, 	 Treatment Response	 144 
		  to treatment		  modalities, and timepoints, and some features  
				    are associated with favorable response	

NSCLC	 CT	 Tumor response	 85	 Lymph node phenotypic information predicts for	 Treatment Response	 69 
		   to treatment		  treatment response with a higher performance than  
				    radiomic features from the primary tumor	

Rectal	 MRI	 pCR	 186	 Pretreatment radiomics nomogram can predict pCR 	 Treatment Response	 145 
				    in locally advanced disease

Gastric	 CT	 Response 	 43	 Pretreatment radiomic analysis can predict pulsed	 Treatment Response	 146 
		  to radiation		  low-dose radiation response	

Hodgkin	 PET	 Unresponsive	 251	 PET radiomics model improved upfront patient	 Treatment Response	 67 
Lymphoma		  tumors		  stratification, predicting primary refractory disease  
				    as well as those who were successfully salvaged  
				    vs those who died from disease	

NSCLC	 CT	 Response 	 20	 Daily CT scans during radiation can be used to	 Treatment Response	 147 
		  to radiation		  assess for early treatment response	

Breast	 MRI	 pCR	 35	 Heterogeneity within tumor subregions associated 	 Treatment Response	 148 
				    with fast washout on DCE-MRI predicted pCR after  
				    neoadjuvant chemotherapy	

Key: chemoRT = chemoradiation, CT = computed tomography, CBCT = cone-beam CT, DFS = disease-free survival, DM = distant metastasis, 
DSS = disease-specific survival, DCE-MRI = dynamic contrast-enhanced MRI, EGFR = epidermal growth factor receptor, FFDM = freedom from 
distant metastasis, GBM = glioblastoma multiforme, HNSCC = head and neck squamous cell carcinoma, HPV = human papilloma virus, IMRT 
= intensity-modulated radiotherapy, LR = local recurrence, LRC = locoregional control, NSCLC = non-small cell lung cancer, MRI = magnetic 
resonance imaging, OS = overall survival, pCR = pathologic complete response, PET = positron emission tomography, PFS = progression-free 
survival, PI-RADS = Prostate Imaging-Reporting and Data System, RC = regional control, RFS = relapse-free survival, SBRT = stereotactic body 
radiation therapy
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Utility of Radiogenomics
There are 2 definitions of “radiog-

enomics” in the literature: 1) the study 
of genetic variation associated with ra-
diation therapy response,84,85 and 2) the 
study of the relationship between gene 
expression patterns and imaging pheno-
types;86,87 we refer to the latter. 

One application of radiogenomics 
is to identify tumor imaging correlates 
of specific genomic attributes, which 
may provide a noninvasive alternative 
to biopsy.88,89 Multiple recent studies 
have shown the ability for MRI-based 
features to predict molecular subtypes 
and hormone receptor status in breast 
cancer.90,91 Other studies have demon-
strated that radiomics can predict the 
presence of epidermal growth factor 
receptor (EGFR) mutations by PET fea-
tures92 and CT features.93 Additionally, 
radiomics may be able to predict pro-
grammed death-ligand (PDL1) expres-
sion,94 human papilloma virus (HPV) 
status95 or a PTEN mutation.96

Others have shown that integrat-
ing radiomic and genomic data into a 
single model can improve prognostic 
power. For example, Badic et al used 
CT features and gene expression in col-
orectal cancer to improve patient strati-
fication97 and Kickingereder et al found 
that an MRI signature combined with 
molecular and clinical data improved 
outcome prediction in glioblastoma.98

Pathways to Clinical Application
Genomic medicine has provided 

substantial insights into tumor biology 
and this has been exploited by medical 
oncologists in several facets of clinical 
practice and trial development.152 An 
advantage medical oncology has over 
radiation oncology in utilizing genomic 
information, is access to numerous bio-
marker panels with established FDA-ap-
proved targeted therapies. In contrast, 
commonly, radiation is an “add-on” 
modality in genomic-based trials, such 
as those with Oncotype Dx (TAILOR 

RT; NCT03488693), targeted therapies 
(NCT03667820), conventional che-
motherapy (NCT03609216) or immu-
notherapies.154 Although not formally 
developed to assess radiation efficacy, 
several molecular classifiers are being 
employed in breast cancer to make de-
cisions for treatment intensification or 
omission.153 

Our institution is planning to initiate 
the first genomic-based prospective clin-
ical trials to guide radiation therapy dose 
in early 2020. As part of this effort, RSI 
is being established in the CLIA mo-
lecular laboratory at Moffitt, which will 
allow us to use RSI and GARD in clini-
cal trials. Our initial focus will be in head 
and neck cancer where we will use RSI/
GARD to guide radiation dose de-esca-
lation for HPV-positive head and neck 
cancer patients. A second trial in triple 
negative breast cancer will utilize the 
RSI/GARD model to decide whether pa-
tients should receive a boost to the tumor 
bed following whole-breast radiation.

Radiomics has the potential to sig-
nificantly improve precision medicine 
in the diagnosis, prognostication, and 
treatment planning for cancer patients. 
However, the current literature is lim-
ited by its retrospective nature, as well 
as significant heterogeneity between 
studies. To improve the quality, stan-
dardization, and reproducibility of fu-
ture studies, Lambin et al developed 
the radiomics quality score (RQS), a 
homogeneous evaluation criterion that 
assesses radiomics studies based on 16 
key components.45,151 Vallieres et al em-
phasized the importance of designing 
high-quality, fully transparent, and ac-
cessible studies to improve the clinical 
translation of radiomics.150 Ongoing pro-
spective clinical trials are investigating 
the utility of radiomics to inform clinical 
decision-making in the treatment of he-
patocellular carcinoma (NCT03917017), 
prostate cancer (NCT03979573), and 
head-and-neck cancer (NCT03953976, 
NCT02666885). A trial in lung cancer 

plans to prospectively collect PET/CT 
data to predict response to immunother-
apy (NCT04007068). However, further 
prospective validation, using the RQS 
as a guideline, is required to fully realize 
the potential of radiomics.

Conclusion
Big data analytics is rapidly pro-

gressing and demonstrates enormous 
potential to change the oncologic deci-
sion-making landscape. As improve-
ments continue in bioinformatics, 
image analysis, statistical/machine 
learning models, and end-user expe-
rience with data interpretation, inte-
gration into the clinical workflow of a 
radiation oncologist is bound to occur 
soon. Genomics and radiomics provide 
an opportunity to increase the precision 
of radiation delivery in selection of dose 
and spatial delivery. Our field should 
openly embrace these tools and take the 
needed steps away from a “one-size-
fits-all” philosophy. 
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