
WWW.APPLIEDRADIATIONONCOLOGY.COM                                            applied radiation oncology®         n       23      December  2019

SA-CME INFORMATION

applied radiation oncology  

SA–CME Information  

Description
This review article discusses recent developments in radiomics (a computational image evaluation technique that integrates med-

ical images, clinical data, and machine learning) its applications to lung cancer treatments, and the challenges associated with radio-
mics as a tool for precision diagnostics and theranostics. Discussion examines methodology, data collection, segmentation, feature 
extraction, feature selection, predictive models, validation, application, data sharing, data standardization, model evaluation and 
model interpretation. Despite hurdles to implementation, radiomic models show immense potential for personalized lung cancer 
diagnosis, risk profiling, and treatment due to their ability to incorporate image characteristics beyond the ken of the human observer.
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Medical images represent an-
atomical and/or functional 
facsimiles of the human 

body. As such, they serve a critical 
role in the diagnosis of diseases and the 
evaluation of treatment response. Cur-
rent interpretations of the images by 
radiologists comprise an anthropogenic 
synopsis of 2-dimensional (2D) or 3-di-
mensional (3D) spatial data. Despite 
extensive efforts at standardization, 
evaluations continue to depend on the 
individual evaluating the images, re-
sulting in variation of interpretation.

Radiomics is an emergent method-
ology within image analysis in which 
quantitative data is acquired using au-
tomated analysis techniques (Figure 
1).1-4 The extracted information, also 
known as image features, can be com-
bined with orthogonal data (eg, clinical 
data or biological measures [ie, muta-
tions, transcriptomic panels, etc.]) to 
build prediction models for diagnosis or 
treatment selection. These strategies are 

poised to offer a more quantitative and 
objective basis for informed medical 
decision-making.1,5,6 

The tripartite mainstays of cancer 
treatment include radiation therapy, 
chemotherapy, and surgery. These 
treatments extensively utilize medical 
images for diagnosis and to monitor ef-
ficacy. The imaging modalities most 
commonly used include computed to-
mography (CT), magnetic resonance 
imaging (MRI), and positron emission 
tomography (PET). The frequent utiliza-
tion of these technologies provides clin-
ical practices, even those with modest 
patient volumes, an extensive collection 
of mineable image data. Indeed, radio-
mics features have already been associ-
ated with improved diagnosis accuracy 
in cancer,7 specific gene mutations,8 and 
treatment responses to chemotherapy 
and/or radiation therapy in the brain,9,10 
head and neck,11,12 lung,13-17 breast,18,19 
and abdomen.20 More recently, radiom-
ics features integrated into a multitasked 

neural network were combined with 
clinical data to derive a personalized 
radiation dose for patients treated with 
stereotactic lung radiation therapy.21 
Altogether, these developments sug-
gest that the integration of image data  
to inform clinical care is on the horizon. 

Herein, we review recent develop-
ments in radiomics, its applications 
to lung cancer treatments, and the 
challenges associated with radiom-
ics as a tool for precision diagnostics 
and theranostics. 

Methodology
A general workflow of radiomics 

is depicted in Figure 2. At the data col-
lection stage, imaging data is combined 
with clinical and histopathological data. 
Image data must undergo additional 
steps before downstream analyses, 
however, including region-of-interest 
segmentation, and feature and texture 
extraction. Based on the classification 
task at hand (eg, local failure after radi-
ation, progression-free survival after im-
munotherapy, etc.), researchers can then 
proceed to the next stage, the training 
and validation of the radiomics model. 
After training and validation, a dataset 
that the algorithm has not yet seen (test 
or holdout set) is used to evaluate the 
model. If the model is shown to be ac-
curate, it may potentially provide clini-
cians with improved decision-making 
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capabilities. Transportability testing 
(using a dataset from a distinct but plau-
sibly related population) of the model is 
also critical since it can help determine 
whether the model can be implemented 
more broadly in other settings. To es-
tablish transportability, an independent 
dataset external to the primary institu-
tion should be used. 

Data Collection 
The first step in radiomics is data 

acquisition. A large sample size is re-
quired because of the complexity of the 
prediction task. Since machine learning 
and neural network-based models can 
learn multifactorial, nonlinear relation-
ships between image-based predictors 
and outcomes, models can inadver-
tently too closely fit or “memorize” the 
data they are built on. This can lead to 
poor performance on previously unseen 
data, a phenomenon known as over-
fitting. To mitigate overfitting, large 
datasets and other strategies are imple-
mented to build improved and more 
generalizable models. 

Although first developed using CT 
images, radiomic methodologies have 
also been implemented for other modal-
ities such as MRI, PET, and ultrasound 

(US). Models are usually built on a sin-
gle modality to ensure the consistent 
treatment of images in the preprocess-
ing pipeline. Images and clinical data 
used to build a radiomic model can be 
gathered from single or multiple institu-
tions. To ensure standardization among 
the data presented to the model, there 
are critical quality assurance steps at 
both the data acquisition and prepro-
cessing steps. Standardization of im-
aging protocols and having a clearly 
defined, universally applicable prepro-
cessing pipeline are critical for model 
reproducibility.

At the time of imaging, acquisition 
and reconstruction parameters such as 
voxel size and gray-level discretization 
are central to achieving reproducible 
results. Other factors that may affect 
stability of radiomic features include 
respiratory motion and use of IV con-
trast. It has been previously shown 
that inter-CT scanner variability22 and 
variability of random noise23 may af-
fect the stability of radiomic features. 
To decrease variability of the features 
during the collection process, resam-
pling and image cropping to a uniform 
spacing and size prior to extracting 
features is recommended.24-26 Another 

data optimization technique involves 
clipping and normalizing voxel intensi-
ties. Lastly, data augmentation through 
preprocessing transformations or data 
generation using neural networks can 
increase the data available to a nascent 
radiomic model.27

Segmentation
Delineation of the tumor and normal 

tissue is a crucial first step in both radi-
ation therapy and radiomics, directly in-
fluencing the performance of radiomic 
models.28 Appropriate segmentation 
is critical to models that extract pre-
defined features directly, as well as to 
neural models, which can be trained to 
emphasize the designated areas. Iden-
tifying the section of the image to be 
used for segmentation and extraction of 
radiomic features is a topic of ongoing 
investigation. Traditionally, features 
are extracted from the segmented tumor 
region. However, there is also increas-
ing interest in image characteristics ad-
jacent and external to the gross tumor 
volume. For example, Dou et al29 have 
shown the possibility to improve mul-
tivariate models to predict the risk of 
distant metastasis by extracting features 
from the peritumoral region.

FIGURE 1. The number of published manuscripts in radiomics has significantly increased in the last several years, representing growing inter-
est and development in this field.
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There are certain obvious challenges 
with manual segmentation: Tumors may 
be near tissue with similar characteris-
tics, making it difficult to distinguish 
between the two structures. Moreover, 
medical images may have distortions 
due to random noise, imaging resolu-
tion, and artifacts. To reduce intra- and 
interobserver variability, automatic or 
semi-automatic segmentation may im-
prove the stability of radiomic features. 
Various methods have been proposed for 
semi-automatic segmentation.30,31 With 
recent advances in deep-learning algo-
rithms, fully automatic segmentation 
methods have also been developed.32 

Feature Extraction 
Originally, radiomic models were 

developed from predefined, “hand-
crafted” features consisting of algebraic 
representations of voxel intensities. 
This structured data can be analyzed 
with classical statistics or with machine 
learning and neural networks. More re-
cently, convolutional neural networks 
have been implemented to directly learn 
properties of the image, allowing for the 
extraction of features beyond those con-
ceived and crafted by humans. Aspects 

from either or both methodologies can 
then be merged into a representative 
quantity (or quantities) known as an 
image signature.

Features can be categorized based 
on origin. Semantic features are those 
currently used in clinical practice as 
visualized and described by the radiol-
ogist. Radiomics complements these 
with nonsemantic, quantitatively and 
systematically extracted features, based 
on voxel intensity. Classic quantitative 
radiomic features can be further cate-
gorized as structural, first, second, and 
higher order. Structural features are 
the most basic descriptive and derived 
measures such as tumor volume, shape, 
maximum diameter, and surface area. 
These features can help quantify tumor 
spiculation and other factors that may 
indicate tumor malignancy. First-or-
der features refer to simple statistical 
quantities such as mean, median, and 
maximum gray-level values found 
within the segmented tumor. Extract-
ing second-order, or textural features, 
quantifies statistical inter-relationships 
between neighboring voxels. This pro-
vides a measure of spatial relationship 
between the voxel intensities in the 

tumor, which may allow for the de-
termination of tissue heterogeneity.33 
Higher-order statistical features are 
extracted by applying filters and trans-
formations to the image. Two of the 
most popular methods are the Lapla-
cian transforms of Gaussian-filtered 
images and wavelet transforms. Such 
higher-order methods increase the num-
ber of features extracted by the order 
of magnitude of filters applied. This al-
lows identification of image attributes 
based on various spatial frequency pat-
terns. Lastly, incorporating the change 
in radiomic features over time, or delta 
radiomic features, has been shown to 
improve lung cancer incidence,34 over-
all survival, and metastases prediction.35

Deep learning, a subset of machine 
learning, uses a neural network model 
that mimics the connectivity of a bio-
logical brain to identify complex ab-
stractions of patterns using nonlinear 
transformations. Neural network mod-
els learn directly from unstructured 
data such as images through convolu-
tional layers that synthesize voxel in-
tensities into representative features. 
Deep-learning approaches typically 
require more data, a challenge that can 

FIGURE 2. The process of constructing a radiomic model occurs in parallel with patient imaging, diagnosis and treatment. Once finalized, the 
model informs each of these areas, which rapidly develop. Advancements in these areas are highlighted in this paper.
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be mitigated through various techniques 
such as data augmentation36 and transfer 
learning.37

Feature Selection 
Manual feature extraction can result 

in thousands of radiomic features, some 
of which are redundant. In a dataset 
with clinical events (eg, local failure 
after radiation therapy) occurring at 
much lower magnitudes, inclusion of 
large-scale parameters with low event 
rates can contribute to model overtrain-
ing or overfitting. Utilization of feature 
selection techniques can help alleviate 
this potential pitfall. 

Radiomic feature selection methods 
focus on stability of features, feature in-
dependence, and feature relevance. The 
stability of features may be analyzed 
with a test-retest dataset in which mul-
tiple images of the same modality are 
taken over a relatively short period to test 
whether such features are reproducible.38 
Feature independence is assessed by sta-
tistical methods testing the correlation 
between the features themselves, such 
as principal component analysis (PCA). 
Feature selection based on relevance 
can be done with a univariate approach, 
testing whether each individual feature 
is correlated with the outcome being in-
vestigated, or a multivariate approach, 
which analyzes the combined predictive 
power of the features.

Parmar et al11 used clustering as a 
method to contend with the large number 
of quantitative features. The high-dimen-
sional feature space was reduced into 
radiomic clusters, with clusters being 
predictive of patient survival, tumor 
stage and histology. Alternatively, neu-
ral networks have been shown to learn 
increasingly detailed geometries in each 
subsequent convolutional layer, and can 
be used to generate a set of highly de-
scriptive image features.39

Development of Predictive Models
A predictive model is then constructed 

from the extracted relevant features  

creating a “radiomic signature.” De-
pending on the task at hand, various 
prediction models can be utilized (eg, 
classification and survivability models). 
Classification models categorize data 
into known categories (eg, tumor is be-
nign or malignant). Survivability models 
require additional time-related informa-
tion about the patients being treated, 
and aim to predict the time to failure or 
survival of patients undergoing a cer-
tain treatment. One approach to predict 
time-to-event clinical outcomes is by 
making the image signature equivalent 
to the logarithm of the hazard ratio in a 
Cox regression model.21,40 Other ma-
chine-learning methods can then be used 
with either manually extracted features 
or the outputs of neural network models 
to derive prediction scores.

Validation
To show that the radiomic model 

is generalizable, it must be validated. 
Model validation on an independently 
obtained external dataset is recom-
mended. The model is usually analyzed 
using the receiver operating characteris-
tic (ROC) curve with the area under the 
curve (AUC) being the commonly re-
ported value in discrimination analysis. 
Model validation should be repeated on 
a target population prior to its deploy-
ment to ensure transportability. 

Challenges and Opportunities
The rapid proliferation of radiomics 

applications has fueled optimism that 
medical images can be utilized to better 
guide clinicians in the recommenda-
tion of optimal treatment strategies. As 
with every technique and technology, 
however, certain challenges require at-
tention to create and implement a robust 
radiomics model.

Data Sharing
Collecting and sharing data over 

multiple institutions or hospitals is a 
significant limitation to model develop-
ment and testing. A single institution or 

hospital typically does not have enough 
events to establish and test a transport-
able radiomics model. To address this 
need, multiple data-sharing networks 
have been established to house shared 
data such as the Cancer Imaging Ar-
chive41 and the Quantitative Imaging 
Network.42 Contributions of well-anno-
tated data to the shared datasets or col-
laborations between multiple institutes 
are critical for future model develop-
ment and implementation. 

Data Standardization
In multi-institutional radiomics stud-

ies, it is rare that all institutes share the 
same imaging acquisition settings such 
as imaging modality, protocol, or re-
construction algorithm. Additionally, 
image segmentation and interpretation 
of the data may be highly subjective 
and prone to human variations. While 
a highly standardized dataset will more 
likely guarantee a consistent model and 
reproducible predictions, this is an im-
practical expectation of a large dataset, 
especially in a multi-institutional set-
ting. Data cleaning and preprocessing 
can mitigate these challenges through 
selection of similarly annotated images, 
image resampling, retrospective seg-
mentation, and even translation of one 
modality to another.43 Additionally, the 
robustness of radiomic models built on 
multi-institutional datasets can be in-
herently higher since they are less prone 
to overfitting caused by a single institu-
tional standard. 

Model Evaluation
Although radiomic models may be 

highly performant on the data on which 
they are built, prediction results may be 
affected when implemented into real 
clinical settings due to model under-or 
overfitting. Therefore, it is crucial to use 
independent, external datasets to evaluate 
the predictive power of the established 
radiomic signature. Additionally, the ra-
diomic model should be trained on new 
data as the standard of care continues to 
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improve for it to adapt to new treatment 
protocols and prognosis, as well as to 
better quantify its accuracy. A reliable 
method to maintain an up-to-date radio-
mics model can be as critical as estab-
lishing the initial model. As data-sharing 
archives41,42 (noted above) become more 
prevalent, the need for large volumes 
of current, external images will be met. 
Since radiomic models can be deployed 
through online or locally hosted software, 
they are highly movable even if the inde-
pendent data on which they are evaluated 
is not. 

Model Interpretation
Since radiomics is a fairly new con-

cept and model structures are inherently 
abstruse (representing a black box), 
questions and concerns are often raised 
toward the ultimate implementation of 
radiomic models. Physician skills and 
intuition are honed over years of train-
ing and experience. There is anticipated 
to be a gulf of trust between physicians’ 
“gestalt” and experience-driven ap-
proaches with the current difficult-to-in-
terpret output of artificial intelligence 
systems. Efforts to improve the inter-
pretability of predictive models include 
feature selection through bootstrapping44 
as well as development of saliency maps 
highlighting the relative importance of 
voxels to the predicted outcome.21 The 
implication that radiomic models man-
ifest underlying biology by being able 
to classify histological subtypes45,46 and 
gene mutations47,48 makes the associ-
ation between genetics and radiomics 
an active area of research. This type of 
integrative analyses of known risk fac-
tors is needed to explain the meaning of 
radiomic features. Promoting enhanced 
interpretability of radiomic and neu-
ral-network-derived models will be a 
critical step to catalyze implementation 
as a decision-support tool. 

Potential Applications
A growing number of studies show the 

value of radiomics as a tool to augment 

clinical decision-making, with signifi-
cant progress in applying radiomics to 
lung cancer diagnosis, treatment, and risk 
evaluation.

Investigative Models
Aerts et al38 created a radiomic sig-

nature prognostic of overall survival in 
independent cohorts of patients based 
on intensity, shape, textural, and wave-
let features. The features were selected 
based on stability using test-retest CT 
scans, independence, and univariate pre-
dictive capability of the features before 
constructing a multivariate model in-
cluding the top feature from each of the 
four feature groups. Several radiomics 
studies have shown diagnostic potential 
in CT-based models to discriminate can-
cerous tumors from benign nodules. 

A number of studies have also ap-
plied radiomics to predict histology 
based on pretreatment CT images45,46 
and radiogenomics to identify the tu-
mors’ underlying gene expression.47,48 
Currently, histological classification 
and genetic subtyping depend on bi-
opsies and re-biopsies. If radiomics 
methods achieve clinical levels of ac-
curacy, it may allow patients to forego 
numerous invasive biopsies. For exam-
ple, Wang et al47 showed that it is pos-
sible to create a deep neural network 
using CT images to provide an accurate 
method to establish epidermal growth 
factor receptor (EGFR) status in lung 
adenocarcinoma patients, potentially 
reducing the need for biopsy.

Another set of studies looked at the 
prognostic and predictive possibilities 
of using the radiomic approach—an 
important area in precision medicine 
because it informs the creation of an op-
timal treatment plan. Such studies predict 
probability of response to treatment,49 
survival,50,51 and risk of metastases.29,52

Extending classification and sur-
vivability models to guide treatment, 
Lou et al21 developed an image-based, 
deep-learning framework for the indi-
vidualizing of radiation therapy dose. 

First a risk score was identified by a 
deep neural network, Deep Profiler. 
This signature outperformed classical 
radiomic features in predicting treat-
ment outcome. This framework also in-
corporates a model to project optimized 
radiation dose to minimize treatment 
failure probability. 

Hosny et al36 trained deep neural net-
works to stratify patients into low- and 
high-mortality risk groups, and were 
also able to outperform models based 
on classical radiomic features as well as 
clinical parameters. The neural network 
predictions were largely stable when 
tested against imaging artifacts and 
test-retest scans. In addition, there was a 
suggestion that deep-learning extracted 
features may be associated with biologi-
cal pathways including cell cycle, DNA 
transcription, and DNA replication. 

Altogether, radiomics could poten-
tially serve an important complemen-
tary role to other orthogonal data such 
as genetic and clinical information to 
improve assessment of clinical charac-
teristics and molecular information. 

Deployment
The models discussed have trans-

lation potential because they could be 
integrated into clinical practice upon 
additional and prospective validation. 
Imaging is a mainstay of clinical use, 
and software deployment of radiomic 
models are noninvasive and, if designed 
with user input, can be seamlessly in-
tegrated into daily workflow for the 
intended specialist (eg, radiologist or 
radiation oncologist). 

There are a several avenues of im-
plementation for software facilitating 
radiomic analyses into routine clinical 
practice. These include improved seg-
mentation through semi-automatic or 
automatic contouring, which can be 
achieved by traditional image analysis 
techniques such as region-growing,30,31 
convolutional techniques such as neu-
ral network-based segmentation,32 or 
“smart-contouring” techniques based 
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on the regions of an image determined 
to be salient based on a deep-learning 
model.21 Another promising area for 
integration is risk-profiling. Modeling 
risk can be achieved through a software 
package paired with an institution’s 
existing imaging server. This should 
minimize significant disruption of the 
existing clinical workflow. As with any 
method of risk-profiling, predictive ra-
diomic models could serve as an advi-
sory decision-support tool in the hands 
of the radiologist and radiation oncolo-
gist. Specifically, radiomic models that 
both model and mitigate the risks are 
poised to alter the clinical paradigm(s). 
Adjusting treatment strategies through 
dose-specific21 or targeted agent-spe-
cific recommendations represent pos-
sible uses that could improve clinical 
outcomes in select patient populations. 
As with segmentation and risk-profil-
ing, these applications can be achieved 
through software deployment. 

Lastly, while other biomarkers are 
likely to represent critical orthogonal 
inputs to more accurately predict clin-
ical outcomes, it is possible that tumor 
intrinsic determinants (ie, genetic alter-
ations, RNA gene expression, etc.) can 
be detected by radiomic features, as 
suggested.38,53 Additional studies that 
seek to determine whether these classes 
of variables (image vs biology) are tau-
tological, orthogonal or somewhere in 
between will be critical to assessing the 
need for additional inputs into the mod-
els. Convergence toward an integrative 
approach that incorporates these varied 
inputs is likely unavoidable in order to 
improve model accuracy and ultimate 
clinical deployment. 

Conclusions
Radiomics is a computational image 

evaluation technique that integrates 
medical images, clinical data, and ma-
chine learning. Despite hurdles to im-
plementation, radiomic models show 
immense potential for personalized 
lung cancer diagnosis, risk profiling, 

and treatment due to their ability to in-
corporate image characteristics beyond 
the ken of the human observer. 
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