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Osama Mohamad, MD, PhD

F O C U S :  R A D I O M I C S

9

24

Erratum
In the article, The global radiation oncology workforce in 2030: Estimating 
physician training needs and proposing solutions to scale up capacity in low- 
and middle-income countries [Appl Radiat Oncol. 2019; 8(2):10-16], figure 3 
inadvertently contained duplicate information. The corrected figure 3 can be 
found at https://cdn.agilitycms.com/applied-radiation-oncology/PDFs/issues/
ARO_06-19_Elmore.pdf.
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EDITORIAL

John Suh, MD, FASTRO, FACR 
Editor-in-Chief

Dr. Suh is the editor-in-chief of Applied 
Radiation Oncology, and professor and 
chairman, Department of Radiation 
Oncology at the Taussig Cancer Institute, 
Rose Ella Burkhardt Brain Tumor and 
Neuro-oncology Center, Cleveland Clinic, 
Cleveland, OH.

More than meets the eye: 
Radiomics in radiation oncology

Radiomics, the theme of this month’s issue, is poised to significantly improve in-
formed decision-making in radiation therapy delivery—an exciting future that is 

swiftly becoming reality in everyday practice. Even more promising is the integration 
of radiomics with data such as molecular, metabolic and microenvironmental tumor 
analytics. Together this information can fuel precision diagnostics and theranostics 
on an individualized level, as described in the enlightening review article, Genomics 
and radiomics: Tools to see the unseen to personalize radiation therapy.  A second 
review delineates the potential of radiomics in lung cancer treatment. This insightful 
overview, An emergent role for radiomic decision support in lung cancer, explains 
how radiomic models offer immense possibility for personalized lung cancer diag-
nosis, risk profiling, and treatment by assimilating image characteristics undetectable 
to the human eye. We hope you find these articles, both of which offer free SA-CME 
credits, helpful in understanding and embracing personalized medicine in radiation 
oncology. 

Rounding out the theme is the Technology Trends feature, The intersection of ra-
diomics, artificial intelligence and radiation therapy. Here, leading experts examine 
the need for reproducibility, standardization, safeguards, and collaboration across 
disciplines and institutions to optimize radiomics. 

We are also pleased to present the thoughtful Global Perspectives column on cul-
tural complexities and their effects on radiation medicine in Beirut, as recounted by 
an ARRO Global Health Scholar. Global health challenges and solutions are further 
addressed in the case report, Use of an OP Care smartphone application to improve 
care of gynecology cancer patients in a low-resource setting. The authors describe 
the feasibility and efficacy of mobile technology to enhance patient record storage, 
treatment monitoring, appointment scheduling and tracking, and more in a clinic in 
Botswana, Africa.  A second case report describes a patient with recurrent, poorly 
differentiated cutaneous squamous cell carcinoma metastatic to the right orbit and his 
complete response to pembrolizumab immunotherapy. A third case report discusses 
the unusual event of strip alopecia in two patients who received high-dose, VMAT-
based stereotactic radiosurgery.

Lastly, we are proud to feature the Resident Voice editorial on the important topic 
of leadership development. As the author urges, we need to squelch the belief that 
leadership training is only for those who want to head a committee or department, 
and usher in awareness, tools and training for all radiation oncology residents during 
this formative point in their career. My strong opinion is that every physician should 
develop their leadership acumen given our influence with patients and society. 

As 2019 ends and 2020 begins, we extend our deepest gratitude to you for your 
support over the last 8 years. We are proud to have greatly expanded our editorial 
offerings, peer review panel, advisory board, SA-CME articles, followers, and col-
laborators since our inception, and look forward to a new year of continued growth, 
service, and inspiration. 
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RESIDENT 
VOICE Leadership development:  

Why is it important for  
radiation oncology residents?

Shauna R. Campbell, DO

Dr. Campbell is a resident physician at the Cleveland Clinic, OH.

Medicine is a unique career in which, regardless of formal titles, all physicians 
will be considered leaders. After more than a decade of higher education one 

may presume that physicians entering independent practice have received formal in-
struction on effective leadership, but too often that is not the case. Leadership devel-
opment was traditionally an investment in those who demonstrated characteristics of 
“natural born leaders” chosen for positions of authority. However, as our expectation 
of leadership has evolved, so should our approach to training and development. The 
authoritative leadership model has been replaced by a collaborative vision of leading 
through influence.1 

Despite growing awareness of the importance of leadership development, it re-
mains sparsely integrated into graduate medical education, and is infrequently in-
cluded in radiation oncology residency specifically. Leadership development should 
be regarded as a part of lifelong learning, recognizing its ability to positively impact 
physician development. Radiation oncology training affords four years for develop-
ing leadership skills at a critical point of a young physician’s career. 

Professionalism, interpersonal skills, and communication are core competencies of 
resident education and important components of leadership, but there is more.  Sup-
pose there is a skill that correlates with resident wellness, performance, and decreased 
burnout. Should we be teaching that? What if that skill is also associated with qual-
ity improvement and patient outcomes? Emotional intelligence is an integral part of 
leadership development that can be taught, measured, and positively impacts all of 
the above.2-4 Implementing a leadership development program takes considerable in-
vestment, but the results can be influential in the short and long term. 

Shauna R. Campbell, DO
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The Cleveland Clinic residency program has been innovative in its creation of 
a leadership curriculum within the formal curricular structure. Leadership train-
ing takes place during semi-annual group retreats scheduled during regular clinical 
hours. The focus of retreats includes self-awareness, team-building, principles of ef-
fective communication, cultural development, and operational leadership.5 As resi-
dents, we participate in both individual and group activities that facilitate strength 
finding, the understanding of leadership styles, and the learning of effective com-
munication skills to enable conflict management. These daylong retreats are well re-
ceived by residents and often followed by an enjoyable group bonding activity such 
as axe throwing, doing an escape room challenge, and volunteering with local orga-
nizations. 

Failing to incorporate formal leadership development into residency training is a 
missed opportunity. Every physician is a leader and providing basic training during 
residency prepares new graduates to be effective leaders. We need to remove the 
notion that leadership training is for those interested in heading a committee or de-
partment and instead provide the stable framework upon which new graduates can 
more effectively manage their clinical practice. The future of medicine will be val-
ue-based, patient-centered care, and the new generation of radiation oncologists will 
need the leadership skills to guide our field through this transition. 

references
1. Collins-Nakai R. Leadership in medicine. McGill J Med. 2006;9(1):68-73.
2. Talarico JF, Varon AJ, Banks SE, et al. Emotional intelligence and the relationship to resident performance: 
a multi-institutional study. J Clin Anesth. 2013;25(3):181-187.
3. Ishak WW, Lederer S, Mandili C, et al. Burnout during residency training: a literature review. J Grad Med 
Educ. 2009;1(2):236-242.
4. Lin DT, Liebert CA, Tran J, Lau JN, Salles A. Emotional intelligence as a predictor of resident well-being. J 
Am Coll Surg. 2016;223(2):352-358.
5. Berriochoa C, Amarnath S, Berry D, Koyfman SA, Suh JH, Tendulkar RD. Physician leadership develop-
ment: a pilot program for radiation oncology residents. Int J Radiat Oncol Biol Phys. 2018;102(2):254-256.

Despite growing awareness of the importance of  
leadership development, it remains sparsely  
integrated into graduate medical education.
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Radiation therapy is a pillar of 
oncologic care for various solid 
malignancies in the curative 

and palliative settings. Technologic 
advancements spanning over a century 
have now provided opportunities for 
radiation to be delivered to the target 
of interest with high accuracy and pre-
cision. In this regard, implementation 
of 3-dimensional (3D) conformal radi-
ation therapy and intensity-modulated 
radiation therapy (IMRT) coupled with 
daily image guidance have enhanced 
the achievable therapeutic ratio over 
a variety of dosing and fractionation 
schemes.1

Similar to medical oncology, radi-
ation delivery has been guided by the 
fine balance of normal tissue toxicity 
and sustainability of durable tumor 
control. It is by these historical obser-
vations in which radiation dose has 
been chosen across a spectrum of ma-
lignancies and, to this day, remains the 

current dosing scheme for many can-
cers. Although it is generally accepted 
that tumors of the same stage, anatomic 
location and histology vary in their re-
sponses to radiation therapy, our field 
delivers treatment under a premise of 
established “clinical tolerance guide-
lines” rather than robust, tumor-spe-
cific, dose-response profiles.

In the last several decades, substan-
tial advancements have been made in 
understanding the molecular catalog, 
metabolic networks and influence of the 
microenvironment on growth, spread 
and treatment response of various tumor 
types, yet employing these data in clin-
ical decision-making has yet to inform 
the practice of radiation oncology. Fur-
thermore, high-throughput analyses of 
clinically employed imaging modali-
ties in radiation delivery has provided 
further opportunity to noninvasively 
categorize intrinsic tumor features 
and stratify patient outcomes. Further 

understanding of host and tumor dif-
ferences with these interrogative ap-
proaches may provide the opportunity 
to precisely deliver radiation therapy 
beyond spatial and anatomic features, to 
one guided by intrinsic tumor biology. 

Interrogation of Tumor Genomic 
Blueprints and Exploitation for 
Radiation Therapy

A major focus of personalized on-
cology has been the molecular charac-
terization of tumors to identify unique 
druggable targets and generate higher 
order tumor classification methods to 
translate into clinical care.2 Numer-
ous high-throughput “-omics” analy-
ses, which encompass transcriptional, 
proteomic, methylation, metabolomic 
and sequencing data, have provided 
unprecedented insight into the underly-
ing biology of various human tumors.3 
These efforts have been largely per-
formed within The Cancer Genome 
Atlas (TCGA) and International Cancer 
Genome Consortium (ICGC) programs, 
although several academic and commer-
cial organizations now perform Clinical 
Laboratory Improvement Amendments 
(CLIA)-certified analyses of tumor tis-
sue to complement these efforts.4

The beginnings of precision oncol-
ogy began with prior laboratory work, 
which identified the first cancer-related 
gene mutation in HRAS several decades 

Genomics and radiomics: Tools 
to see the unseen to personalize 
radiation therapy 
G. Daniel Grass, MD, PhD; Matthew N. Mills, MD; Jacob G. Scott, MD, DPhil;  
Steven A. Eschrich, PhD; Javier Torres-Roca, MD

Dr. Grass is an assistant member and Dr. Mills is a radiation oncology resident, Depart-
ment of Radiation Oncology, Lee Moffitt Cancer Center and Research Institute, Tampa, 
FL. Dr. Scott is an assistant professor, Department of Translational Hematology and 
Oncology Research, Cleveland Clinic, Cleveland, OH. Dr. Eschrich is a senior member, 
Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute. 
Dr. Torres-Roca is a senior member, Department of Radiation Oncology, H. Lee Moffitt 
Cancer Center and Research Institute. Disclosure: Drs. Scott, Torres-Roca and Eschrich 
report intellectual property (IP); Drs. Scott and Torres-Roca report IP regarding genomi-
cally adjusted radiation dose (GARD), and Drs. Eschrich and Torres-Roca report stock in 
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Cancer Type Number of Genes Training Validation Reference(s) 
 in Signature Cohort(s) Cohort(s)

Breast 34 343 patients 605 patients and additional 25 
   matched 524 patients

Cancer Agnostic  474 refined to 10 by systems  48 cell lines  852- Breast 15, 17, 109-113, 149 
(NCI-60 cell line panel) biology methods  73- Pancreas 
   270 -GBM TCGA 
   60- NSCLC 
   92- HNSCC 
   14- Rectal 
   12- Esophagus 
   42- Melanoma 

Breast 51 16 cell lines and 228 patients 22 
  343 patients

Prostate 24 196 patients 330 patients 24

Breast 4 191 patients 112 patients 23

Breast 248 168 patients 139 patients 107

Cancer Agnostic  31 60 cell lines 1045-TCGA Breast 99-101 
(NCI-60 cell line panel)   463- TCGA GBM 
   263- Glioma 

Head and Neck 5 (miRNA) 2 lymphoblastic  435-HNSCC TCGA 102 
  cell lines with ATM  
  alteration from single patient   

Head and Neck (HPV-) 13 86- TCGA HNSCC 44 HNSCC patients 103 
  32 HNSCC cell lines 63 HNSCC (HPV-) 
  128- TCGA HNSCC (HPV-) 5 HNSCC cell lines  
   59 cell lines (NCI-60) 

Head and Neck (HPV-) 7 130 patients 121 patients 104

Esophageal 41 152 patients 31 patients 26

Gastric 11 371- TCGA Gastric 371 patients  108 
   (cross-validated from training) 

Soft Tissue Sarcoma 26 253- TCGA Sarcoma 101 patients  105 
   (cross-validated from training) 

Cervical 7 25 patients N/A 106

Key: ATM = ataxia telangiectasia mutated, GBM = glioblastoma multiforme, HNSCC = head-and-neck squamous cell carcinoma, HPV = human 
papilloma virus, miRNA = microRNA, NCI = National Cancer Institute, NSCLC = non-small cell lung cancer, TCGA = The Cancer Genome Atlas

Table 1. Selected Studies Developing Gene Signatures That Infer Intrinsic Radiosensitivity

ago.5 Following this discovery, other so-
matic alterations have been identified in 
various tumors, which has formulated 
the notion that genetic alterations may 
be targeted in specific tumors. Notably, 
analysis of genomic data from patient 
tumors has provided opportunity to de-
velop targeted agents against various 
proteins controlling kinases to epigenetic 
modulators.6 Additionally, the develop-

ment of therapeutic monoclonal antibod-
ies (mAb) has transformed oncologic 
care, most recently by modulating the 
host immune response to tumors.7 Many 
of these targeted agents have been em-
ployed in unselected metastatic cohorts, 
although tumor profiling has been able  
to separate responders from nonrespond-
ers based on intrinsic tumor features. 
Various trials employing molecular 

profiling have begun, though to date, no 
prospective trial has demonstrated a ben-
efit to selecting targeted agents based on 
tumor genomic make-up.8 

In contrast to targeted therapy selec-
tion, determination of the optimal radi-
ation regimen may require a different 
approach. Ionizing radiation does not 
have a distinct “target,” but distrib-
utes its effect in the cell via a stochas-
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tic manner causing damage to DNA, 
organelles and cellular membranes.9 
Additionally, at the tumor level, ra-
dioresponsiveness is influenced by 
other treatment parameters, including 
dose-volume relationships, total dose, 
fractionation pattern and type of radia-
tion. In support of the latter, recent stud-
ies highlighted molecular differences 
in tumor cell radiosensitivity between 
dense and sparse ionizing rays10 and 
various dose per fraction regimens.11 

Some of the first studies evaluating 
a molecular basis for radiation sen-
sitivity were related to normal tissue 
toxicity in patients with alterations in 
ataxia telangiectasia mutated (ATM),12 
which supported a DNA damage basis 
for intrinsic radiosensitivity. Numer-
ous observations in single nucleotide 
polymorphism (SNP) analyses and 
experimental manipulations of DNA 
damage repair (DDR) modulators have 
supported this model, yet no clinically 
actionable genetic alteration has been 
validated.4 Interestingly, patients with 
rare genetic syndromes driven by com-
promised DDR pathways demonstrate a 
spectrum of responses, suggesting that a 
single alteration in core DDR machin-
ery may not be a sole determinant of ra-
dioresponsiveness.13 Yard et al profiled 
more than 500 cell lines and identified 
interconnectedness between DDR pro-
tein alterations and genomic stability, 
which governed intrinsic radiosensitiv-
ity.14 This study underscores the poly-
genic trait of radiation sensitivity. 

Attempts to model the polygenic na-
ture of radiation sensitivity have con-
tinued to emerge in recent years. One of 
the first studies to address this question 
was by Eschrich et al, who identified a 
cancer-agnostic diverse gene network, 
which modeled the cellular survival fol-
lowing 2 Gy in 48 cancer cell lines.15 
This network was reduced to 10 hub 
genes, from which a multigene expres-
sion signature was derived, termed the 
radiosensitivity index (RSI). The RSI has 
predicted for clinical outcomes in various 

patient cohorts treated with radiation,16 
and recently Scott et al demonstrated 
that substitution of a tumor-specific RSI 
value for the alpha variable in the linear 
quadratic model derives an actionable 
tumor feature termed the genomically 
adjusted radiation dose (GARD),17 which 
can stratify clinical outcomes in patients 
treated with radiation.18,19

Others have hypothesized that tumor 
type-specific evaluation of radiation 
sensitivity may provide more robust 
classifiers compared to cancer-agnostic 
approaches, although some have sug-
gested that despite heterogeneous sites 
of tumor origin, a common transcrip-
tional program may regulate radiosen-
sitivity.20,21 Table 1 is a nonexhaustive 
list of gene signatures developed to 
infer radiosensitivity. For instance, 
in breast cancer, Speers et al derived a 
transcriptional signature based on sur-
vival after 2 Gy in breast cancer cell 
lines and a patient cohort that predicted 
for local control in patients treated with 
radiation,22 and Tramm et al identified a 
4-gene signature that predicted for post-
mastectomy radiation benefit.23 Sim-
ilarly, the postoperative radiotherapy 
outcome score (PORTOS), a 24-gene 
signature in prostate cancer, has been 
validated as a predictive tool for assess-
ing distant metastasis risk following 
postprostatectomy radiation.24 

Combining gene signatures repre-
senting distinct biological processes 
may also improve the robustness of 
clinical classifiers. For example, Cui et 
al developed independent radiosensitiv-
ity and antigen processing/presentation 
signatures in breast cancer cohorts and 
found that integration of these signa-
tures improved outcome stratification.25 
Zhang et al also found that integrating 
a 31-gene signature with the RSI, both 
derived similarly from the NCI-60 cell 
line panel, improved predictive ability 
in esophageal cancer patients.26 

Interestingly, many signatures pro-
posed to delineate intrinsic radiosensi-
tivity show little overlap, if any, with 

regard to gene sets. Is this due to a 
broadly conserved transcriptional pro-
gram resulting from genotoxic stress or 
is there redundancy in the information 
of gene signatures? Despite publication 
of various gene signatures representing 
diverse biologic processes (eg, hypoxia, 
epithelial-mesenchymal transition, cell 
proliferation), prior studies have identi-
fied similarities in the predictive ability 
of diverse gene sets in a single dataset for 
similar clinical endpoints. For instance, 
Fan et al found a high concordance for 
nonoverlapping gene signatures in breast 
cancer, suggesting a common biologic 
underpinning.27 

Few studies investigating relation-
ships between gene signatures and clin-
ical outcomes prove the specificity of 
the derived signature by testing against 
a negative control signature. A study by 
Venet et al found that gene signatures 
unrelated to cancer biology (ie, effect of 
postprandial laughter, skin fibroblast lo-
calization, social defeat in mouse brains) 
were associated with overall survival in 
a breast cohort and found that only 18 of 
47 (40%) signatures from the literature 
had the ability to outperform random sig-
natures of similar size.28 

Functional redundancy of many gene 
signatures argues that robust statistical 
methods, including random permutation 
of genes selected to represent signature 
modules, are needed to avoid spurious 
associations with clinical outcomes.29 As 
the number of gene signatures continues 
to grow, it is important to interrogate the 
biology of individual genes composing 
the signature since sophisticated bioin-
formatics analyses can overcome real bi-
ologic differences and ultimately lead to 
no downstream utility.30

There are several important limita-
tions to consider when implementing 
genomic-based strategies in clinical 
medicine. A major concern is the use 
of single-biopsy-site, tumor-profiling 
data to infer overall tumor biology. 
Tumors have significant spatial and 
temporal heterogeneity,31,32 often with 
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opposing prognostic gene expression 
profiles or targetable mutations in dif-
ferent tumor regions. Although hetero-
geneity is evident, selection of many 
targeted therapies and clinically useful 
gene signatures is informed by sin-
gle-region analyses,33 suggesting that 
the calculated signal in the readout may 
represent central biology in the tumor. 
Tumor profiling adds an additional 
level of complexity compared to sig-
natures derived from cell cultures due 
to heterogeneous cell populations con-
tributing to tumor composition. Aran 
et al found that noncancerous cell pop-
ulations contribute to gene expression 
profiles and following adjustment for 
tumor purity, variation in differentially 
expressed genes and pathway enrich-
ments were lost; this study emphasizes 
the need to correct for tumor purity.34 

Another important feature to con-
sider is the assumption that a snapshot 
of tumor biology derived from a single 
biopsy is representative of biology as 
treatment progresses. Myriad evidence 
demonstrates adaptive changes follow-
ing exposure to various treatments.35,36 
For example, radiation has been shown 
to induce alternative splicing,37 which 
has the potential to increase transcrip-
tome diversity. Another example of 
adaptation is in prostate cancer cells ex-
posed to enzalutamide, which results in 
differential expression of genes regulat-
ing inflammation and various metabolic 
processes.38 Thus, assuming an iso-effect 
response to each fraction of radiation 
may not provide a complete picture of 
the dynamicity in a responding tumor.39 

Lastly, and of utmost importance, is 
the required external validation of de-
rived signatures before adoption into 
clinical practice. Rigorous testing in 
prospective randomized clinical trials 
or prospectively collected retrospective 
analyses of previous phase III trials are 
required to demonstrate robustness of 
the signature outside of the training and 
nonprospectively collected validation 
cohorts. The utility of genomic-based 

approaches in radiation has lagged as 
none of the aforementioned signatures 
have withstood scrutiny of the protec-
tive regulatory barriers needed to safe-
guard patients from implementation in 
clinical decision-making. 

Radiomics: A Noninvasive Means  
to Assess Tumor Biology

Routine medical imaging, including 
computed tomography (CT), magnetic 
resonance imaging (MRI) or positron 
emission tomography (PET), is para-
mount to the diagnosis, treatment and 
follow-up of cancer patients.40 Radia-
tion oncologists approach data supplied 
by these anatomical and functional 
images differently than diagnostic ra-
diologists, in that images are used to 
plan dose distributions that cover gross 
disease or regions at risk for spread. 
Although qualitative assessment by 
radiologists provides useful diagnos-
tic information, each image contains a 
plethora of features that may be used for 
precise radiation delivery and treatment 
selection. 

Radiomics refers to high-throughput 
extraction of quantitative image features 
from standard-of-care images, such as 
CT, MRI and PET followed by relation 
to biologic or clinical endpoints.41-43 
This noninvasive process allows for the 
ability to describe tumor characteristics 
while accounting for spatial and tem-
poral heterogeneity.44,45 Radiomics has 
the capacity to detect medical imaging 
phenotypes that are reflective of tumor 
features at the cellular level, with a prime 
example being 18-fluorodeoxyglucose 
PET (FDG-PET) representing glu-
cose uptake.41 Also, data obtained from 
quantitative image analysis can identify 
novel tumor features that complement 
clinical or genetic characteristics, thus 
improving the understanding of tumor 
biology.43 Radiomics has potential to be 
a powerful tool to personalize clinical- 
decision algorithms, and novel methods 
continue to emerge for utilization in radi-
ation therapy. 

The workflow of radiomics involves 
several steps, including image acqui-
sition, segmentation of the regions of 
interest (ROI), extraction of descriptive 
features, predictive modeling, and vali-
dation; each of these steps pose unique 
challenges described further below.42,45

Image Acquisition
The first step of radiomics involves 

acquiring standard-of-care images. 
Although lack of standardized imag-
ing protocols across institutions does 
not significantly affect clinical utili-
zation, these diverse protocols do im-
pact extraction of quantitative features. 
Heterogeneous source data increase 
the probability for noise interference, 
calibration error and unfruitful analy-
ses. For this reason, nonstandardized 
multi-institutional radiomics can pose 
major challenges. There have been 
recent attempts to address this issue 
through standardization of the imaging 
protocol, including the Quantitative 
Imaging Biomarkers Alliance (QIBA) 
and the Quantitative Imaging Network 
(QIN).46,47

Segmentation of Regions  
of Interest

The next step is segmentation of 
ROIs to determine which pixels/vox-
els within the image are to be analyzed. 
This step has been called the most chal-
lenging and contentious component 
of radiomics, and the segmentation 
process varies greatly across studies.42 
The process can be conducted manu-
ally, which can introduce bias through 
user variability48 or can potentially be 
semi- or fully automated with newer ap-
proaches.49,50 

Extraction of Descriptive Features
Radiomic features can be divided 

into spatial (static) and temporal (dy-
namic) features. Static features are 
derived from shape, volume, voxel in-
tensity and texture, whereas dynamic 
features represent changes in kinetics 
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with time-varying protocols.51 Seman-
tic features, commonly used in radiol-
ogy to qualitatively describe images 
(eg, spiculation, cavitation, necrosis), 
can be time-consuming to capture and 
do not provide more granular data for 
statistical modeling. Ongoing efforts 
with machine-learning methods strive 
to increase inter-reader agreement, 
lower variance, and augment more 
rapid data acquisition for semantic 
features.52 Agnostic features, which 
quantitatively describe heterogeneity 
within the ROI (eg, wavelets, textures, 
histogram characteristics) can provide 
statistical inter-relationships between 
voxels and reveal hidden patterns. 
These features can be calculated by 
various texture matrices (eg, gray-level 
co-occurrence, neighborhood gray tone 
difference matrix); for a more thorough 
description of feature calculation please 
see the recent article by Rizzo et al.53 

The feature extraction process is 
variable across institutions with re-
cent attempts to address this issue. The 
Image Biomarker Standardization Ini-
tiative (IBSI) is an international col-
laboration that works to standardize 
extraction of image biomarkers.54 Ad-
ditionally, an open platform termed 
Computational Environment for Ra-
diological Research (CERR) has been 
introduced to improve reproducibility, 
speed and clinical integration of radio-
mics research.55,56 Other open-source 
software to extract features includes 
RaCaT and LIFEx.57,58 

Predictive Modeling  
and Validation

Following feature extraction, data 
interrogation via manual statistical 
analysis or machine learning, is con-
ducted to test for relationships between 
features, clinical endpoints or other 
questions of interest in a training model. 
Model building from a small sample 
size relative to the number of features 
can result in reduced accuracy and risk 
of overfitting. This potentially may be 

obviated by predetermining subsets of 
features to analyze or removing highly 
correlated variables, yet there are no-
table statistical considerations when 
analyzing large datasets.59,60 Model val-
idation, both internal and external, is a 
necessity for radiomics studies. Ideally, 
a successful model will perform simi-
larly in training and validation cohorts.  
Beyond the scope of this article, Park 
et al provide a useful guide to assess 
model performance in radiomics.61 
When constructing predictive models 
with multivariable analysis, guidelines 
from transparent reporting of a multi-
variable prediction model for individ-
ual prognosis or diagnosis (TRIPOD)  
can help maintain reproducibility and 
transparency.62 

Clinical Applications
Radiomics can significantly impact 

clinical decision-making within oncol-
ogy,42,45,63 including radiation.64 Due 
to the vast number of recent radiomics 
studies, indicated by a 50% increase in 
published studies between 2017 and 
2018,65 we have highlighted a subset 
with potential to personalize radiation 
therapy (Table 2). 

Prognostication
Numerous studies have shown the 

utility of radiomics in stratifying clini-
cal outcomes. Aerts et al demonstrated 
a CT-based radiomics signature, which 
captured heterogeneity and had signifi-
cant prognostic value in lung and head-
and-neck cancer.41 Another recent study 
found that a subset of features extracted 
from planning CT and cone-beam CT 
(CBCT) scans are interchangeable, and 
CBCT-based signatures were prognos-
tic for lung cancer survival.66 

Treatment Response 
Radiomics has the potential to 

predict radiation therapy response. 
A recent study demonstrated that a 
PET-based model developed with ma-
chine-learning improved prediction 

of primary refractory disease in Hod-
gkin lymphoma.67 Also, Abdollahi et 
al developed an MRI-based model that 
predicted radiation therapy response 
for prostate cancer patients.68 Another 
CT-based model based on lymph node 
phenotypic features was predictive of 
pathologic response after neoadjuvant 
chemoradiation in lung cancer and out-
performed primary tumor feature sets.69 
Zhang et al combined 5 MRI radiomic 
features to distinguish radiation ne-
crosis from tumor progression in brain 
metastasis treated with the Gamma 
Knife (Stockholm, Sweden).70 Sim-
ilarly, a T2-weighted MRI classifier 
outperformed qualitative assessment in 
diagnosing complete response in rectal 
cancer patients after neoadjuvant chemo-
radiation.71 Another CT-based signature 
outperformed physicians in identifying 
early changes associated with local re-
currence after stereotactic ablative radia-
tion therapy (SABR) for early stage lung 
cancer.72 Clearly, radiomics modeling in 
assessing treatment response is an area 
with future utility. 

Treatment Planning
Another exciting area is the potential 

to improve radiation treatment planning 
and target selection. Quantitative image 
analysis allows for the identification 
of spatially explicit and distinct subre-
gions, or habitats, of the tumor.73 These 
habitats may be the result of unique 
intratumor selection mechanisms and 
have been shown to have some clini-
cal significance. For example, Cui et 
al demonstrated that MRI multiregion 
analysis outperformed conventional 
prognostic factors in glioblastoma74 and 
Wu et al showed subregions in PET and 
CT images were also more robust in 
predicting lung tumor control than com-
monly used prognostic parameters.75 
Rathore et al developed an MRI signa-
ture, which provided in vivo estimation 
of spatial extent and pattern of tumor 
recurrence within peritumoral edema 
of glioblastoma; these high-risk areas 
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Cancer Imaging Study Number Conclusion of Analysis  Clinical Reference 
 Modality Endpoint(s) of Patients  Application

Prostate  MRI Diagnosis 381 MRI-based radiomics models outperformed  Diagnosis 114 
    PI-RADSv2 in distinguishing cancerous vs non- 
    cancerous tissue or  high- vs low-grade disease  

NSCLC PET OS Training: 262  FDG-PET radiomics from tumors and nodes  Prognostication 115 
   Validation: 50 can improve prognostication for NSCLC  

GBM MRI OS 79 Multiregion quantitative analysis of MR images Prognostication 74 
     has prognostic utility for GBM and outperformed  
    conventional prognostic factors  

NSCLC CT OS, FFDM, LRC 107 Radiomics features change due to radiation  Prognostication 116 
    therapy and end of treatment values may be  
    indicators of treatment response  

Prostate MRI Biochemical  74 Radiomic analysis of MRI predicted biochemical Prognostication 117 
  recurrence  recurrence following radiotherapy  

GBM MRI OS, PFS Training: 126 Radiomic analysis had significant prognostic Prognostication 118 
   Validation: 165” value for OS and PFS in patients with recurrent  
    GBM receiving bevacizumab  

Rectal MRI LR, DM, DFS Training: 67 Delta radiomics via MRI predicted clinical Prognostication 119 
   Validation: 34 outcomes after chemoRT and surgery as an 
    independent prognostic factor  

GBM MRI PFS, OS 181 Radiomics improved prognostication for patients Prognostication 98 
    beyond molecular, clinical, and standard imaging  

GBM MRI OS Training: 75 Deep-learning-based radiomics model was able Prognostication 120 
   Validation: 37 to generate a prognostic imaging feature-based  
    biomarker for OS prediction  

NSCLC CT OS, RFS, LR-RFS 59 CT-based radiomics prognosticates OS and Prognostication 121 
    progression as early as 3 months after SBRT

NSCLC PET/CT OS, DSS, RC 150 Radiomics predicts control and survival for  Prognostication 122 
    patients with lung cancer treated with SBRT 

Head and Neck PET/CT LRC, DM 300 Models combining radiomic and clinical  Prognostication 123 
    variables had significant prognostic utility for  
    LRR and DM in patients treated with chemoRT 

NSCLC CT OS Training: 132 Subset of radiomic features from CT and CBCT Prognostication 66 
   Validation: 62  images are interchangeable and a previously 
   and 94 described radiomics signature is prognostic  for OS

NSCLC PET/CT DM Training: 70 PET imaging characteristics were significantly Prognostication 75 
   Validation: 31 prognostic for the development of distant metastasis  
    in patients with early stage NSCLC 

Esophageal CT OS 36 Post-treatment texture analysis was predictive  Prognostication 124 
    of survival, and the combination of pretreatment  
    texture parameters and maximum wall thickness  
    performed better than morphologic tumor response 

Key: chemoRT = chemoradiation, CT = computed tomography, CBCT = cone-beam CT, DFS = disease-free survival, DM = distant metastasis, 
DSS = disease-specific survival, DCE-MRI = dynamic contrast-enhanced MRI, EGFR = epidermal growth factor receptor, FFDM = freedom from 
distant metastasis, GBM = glioblastoma multiforme, HNSCC = head and neck squamous cell carcinoma, HPV = human papilloma virus, IMRT 
= intensity-modulated radiotherapy, LR = local recurrence, LRC = locoregional control, NSCLC = non-small cell lung cancer, MRI = magnetic 
resonance imaging, OS = overall survival, pCR = pathologic complete response, PET = positron emission tomography, PFS = progression-free 
survival, PI-RADS = Prostate Imaging-Reporting and Data System, RC = regional control, RFS = relapse-free survival, SBRT = stereotactic body 
radiation therapy

Table 2. Selected Radiomics Studies with Potential to Personalize Radiation Therapy Delivery
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Cancer Imaging Study Number Conclusion of Analysis  Clinical Reference 
 Modality Endpoint(s) of Patients  Application

GBM MRI OS 32 MRI spatial variations defined regional habitats in  Prognostication 125 
    GBMs, and the distribution of these varied significantly  
    among the different survival groups 

Cervical PET, MRI LRC Training: 69 Radiomics from MRI and PET predicted recurrence Prognostication 126 
   Validation:33 and LRC with higher prognostic power than clinical  
    parameters 

NSCLC CT Molecular  57 Radiomic features from preoperative CT images were Prognostication 127 
  discrimination  significantly associated with mutational profiles in Radiogenomics 
  OS  lung squamous cell carcinoma  

Head and Neck CT Molecular  Training: 93 Heterogeneity of HNSCC tumor density is Prognostication 95 
  discrimination Validation: 56 associated with LC after chemoRT and HPV status Radiogenomics   
  LC     

Prostate CT Gleason score 342 CT-based radiomics model was able to accurately Prognostication 128 
     distinguish high risk from low risk and Gleason  Radiogenomics 
    score  >7 vs 3+4 vs 4+3  

Head and Neck PET/CT Molecular Training:  474 PET/CT-based radiomic signature was significantly Prognostication 41 
NSCLC   discrimination  Validation:  545 prognostic for OS; radiomic features significantly Radiogenomics 
  OS  associated with different gene sets  

Nasopharyngeal MRI Therapy response Training: 100 MRI radiomics predicted response and survival and Prognostication 129 
   Validation: 23 in combination with clinical data, showed excellent Treatment Response 
     predictive performance  

Hepatocellular CT LR 106 A robust radiomic signature (one signal feature)  Prognostication 130 
    predicted LR and OS after radiation Treatment Response 

Colorectal CT Molecular  64 Combining contrast-enhanced CT radiomics with Radiogenomics 97 
  discrimination  gene expression and histopathologic factors 
  OS, PFS  provided improved prognostication 

Head and Neck PET/CT Molecular  53 Combining p16 and Ki-67 staining with PET/CT Radiogenomics 94 
  discrimination  textural features helps determine PD-L1 expression 

Renal cell CT Molecular  45 Machine-learning based quantitative CT texture Radiogenomics 131 
  discrimination  analysis predicted PBRM1 mutation status 

GBM MRI Molecular  Training: 69 Preop MRI features predict for PTEN mutation Radiogenomics 96 
  discrimination Validation: 40   

NSCLC CT Molecular  298 CT-based radiomics of lung adenocarcinomas Radiogenomics 93 
  discrimination  predicted presence of EGFR mutations in Asians 

Prostate MRI Molecular  17 Radiomic features correlated with gene expression Radiogenomics 132 
  discrimination 

Breast MRI Proliferation 377 Quantitative radiomics features from DCE-MRI  Radiogenomics 133 
    were associated with Ki67 expression 

Breast MRI Molecular  922 Machine learning radiomics model, based upon Radiogenomics 91 
  discrimination  DCE-MRI features, predicted for receptor status 

Key: chemoRT = chemoradiation, CT = computed tomography, CBCT = cone-beam CT, DFS = disease-free survival, DM = distant metastasis, 
DSS = disease-specific survival, DCE-MRI = dynamic contrast-enhanced MRI, EGFR = epidermal growth factor receptor, FFDM = freedom from 
distant metastasis, GBM = glioblastoma multiforme, HNSCC = head and neck squamous cell carcinoma, HPV = human papilloma virus, IMRT 
= intensity-modulated radiotherapy, LR = local recurrence, LRC = locoregional control, NSCLC = non-small cell lung cancer, MRI = magnetic 
resonance imaging, OS = overall survival, pCR = pathologic complete response, PET = positron emission tomography, PFS = progression-free 
survival, PI-RADS = Prostate Imaging-Reporting and Data System, RC = regional control, RFS = relapse-free survival, SBRT = stereotactic body 
radiation therapy

Table 2. Selected Radiomics Studies with Potential to Personalize Radiation Therapy Delivery (continued)
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Cancer Imaging Study Number Conclusion of Analysis  Clinical Reference 
 Modality Endpoint(s) of Patients  Application

Breast MRI Molecular  84 Radiomic image phenotypes were strongly Radiogenomics 134 
  discrimination  associated with the triple negative subtype 

Breast MRI Molecular  47 Quantitative analysis of MR imaging identified Radiogenomics 135 
  discrimination  associations with activation of various molecular 
     pathways (tyrosine kinase signaling, immune) 

NSCLC PET Molecular  348 EGFR appears to drive metabolic tumor phenotypes Radiogenomics 92 
  discrimination  that are captured in PET images, whereas KRAS  
    mutations do not 

Prostate MRI Toxicity 30 Early structural change analysis may contribute  Toxicity 136 
    to predict postradiotherapy fracture 

NSCLC CT Toxicity 32 Radiomic features can classify and predict who  Toxicity 137 
    will develop immunotherapy-induced pneumonitis 

Esophageal CT Toxicity 106 Radiomics can provide a quantitative, individualized  Toxicity 79 
    measurement of patient lung tissue reaction to  
    radiation and risk of pneumonitis 

Nasopharyngeal CT Toxicity 35 Radiation-induced acute xerostomia can be predicted  Toxicity 81 
    by saliva amount and CT changes 

NSCLC CT Toxicity 14 Radiomics features correlated with physician-scored Toxicity 80 
    post SBRT lung injury and showed a significant dose- 
    response relationship 

Nasopharyngeal CT Toxicity 21 Volume and textural feature changes on CT during  Toxicity 82 
    radiation treatment predict for  parotid shrinkage 

Head and Neck CT Toxicity Training: 22 Mid-treatment parotid gland changes evidenced by Toxicity 83 
   Validation: 4 CT radiomic analysis substantially improved the  
    prediction of late radiation-induced xerostomia 

Breast MRI Subclinical  146 Preoperative MRI textural features improved the Treatment Planning 138 
  disease  prediction of sentinel lymph node metastasis 

Prostate MRI Gleason score  48 Multiparametric MRI-based radiomics was able to Treatment Planning 139 
  prediction  generate stable Gleason score probability maps 

GBM MRI Regions at risk 90 Multiparametric MRI pattern analysis assists with  Treatment Planning 76 
    in vivo estimation of the spatial extent and pattern  
    of recurrence in peritumoral edema, which can  
    guide resection or radiation dose escalation

Esophageal CT Subclinical  197 CT-based radiomics signature significantly Treatment Planning 140 
  disease  associated with lymph node metastasis 

Prostate MRI Regions at risk 23 Radiomics-based framework is able to generate  Treatment Planning 78 
    a targeted focal treatment radiation plan 

Head and Neck MRI LRC 14 MRI subvolumes at baseline, which persist during  Treatment Planning 77 
    early course of chemoRT and predict for failure,  
    could identify opportunity for local dose boost 

Bladder CT Subclinical  Training: 80 Preoperative CT-based radiomic nomogram Treatment Planning 141 
  disease Validation: 38 accurately predicted lymph node metastasis 

Key: chemoRT = chemoradiation, CT = computed tomography, CBCT = cone-beam CT, DFS = disease-free survival, DM = distant metastasis, 
DSS = disease-specific survival, DCE-MRI = dynamic contrast-enhanced MRI, EGFR = epidermal growth factor receptor, FFDM = freedom from 
distant metastasis, GBM = glioblastoma multiforme, HNSCC = head and neck squamous cell carcinoma, HPV = human papilloma virus, IMRT 
= intensity-modulated radiotherapy, LR = local recurrence, LRC = locoregional control, NSCLC = non-small cell lung cancer, MRI = magnetic 
resonance imaging, OS = overall survival, pCR = pathologic complete response, PET = positron emission tomography, PFS = progression-free 
survival, PI-RADS = Prostate Imaging-Reporting and Data System, RC = regional control, RFS = relapse-free survival, SBRT = stereotactic body 
radiation therapy

Table 2. Selected Radiomics Studies with Potential to Personalize Radiation Therapy Delivery (continued)
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may be optimal targets for dose intensi-
fication.76 Similarly, Wang et al utilized 
dynamic contrast-enhanced MRI to 
identify subvolumes of primary head-
and-neck tumors at increased risk for 
local failure.77 Recently a multimodule 
framework called radiomics-based tar-
geted radiation therapy planning (Rad-
TRaP) was created, which employs 

MRI data, deformable image registra-
tion, and a feature-based dose plan.78

Toxicity
Radiomics also has the capacity to 

assess for and predict radiation-induced 
toxicity. Cunliffe et al identified changes 
in serial CT features that are associated 
with radiation dose and development of 

radiation pneumonitis.79 Another study 
identified CT-based texture features sig-
nificantly correlated with dose and lung 
injury severity after SABR.80 Others 
have found that observed changes in ra-
diomics-based measures (delta radiom-
ics) over the course of radiation therapy 
predict for parotid gland shrinkage and 
xerostomia.81-83

Table 2. Selected Radiomics Studies with Potential to Personalize Radiation Therapy Delivery (continued)

Cancer Imaging Study Number Conclusion of Analysis  Clinical Reference 
 Modality Endpoint(s) of Patients  Application

Head and Neck PET/CT Segmentation 40 PET/CT-based textural characterization  Treatment Planning 142 
    discriminates between normal and abnormal tissue 

Rectal MRI pCR 114 T2-weighted sequence analysis is more predictive  Treatment Response 71 
    of pCR after chemoRT vs qualitative assessment 

Brain Metastases PET Toxicity vs  47 Textural feature analysis may have potential to Treatment Response 143 
  Progression  discriminate brain metastases and radiation injury 

NSCLC CT LR 45 Radiomics detects early changes associated with  Treatment Response 72 
    LR that are not typically considered by physicians 

Brain Metastases MRI Toxicity vs  87 Delta radiomics can distinguish between radiation Treatment Response 70 
  Progression  necrosis and tumor progression after radiosurgery

Prostate MRI Gleason score  35 Machine-learning-based models predicted IMRT Treatment Response 68 
  and stage  response, Gleason score and stage 

Cervical MRI,  PET Tumor response  21 Tumor heterogeneity varies between patients,  Treatment Response 144 
  to treatment  modalities, and timepoints, and some features  
    are associated with favorable response 

NSCLC CT Tumor response 85 Lymph node phenotypic information predicts for Treatment Response 69 
   to treatment  treatment response with a higher performance than  
    radiomic features from the primary tumor 

Rectal MRI pCR 186 Pretreatment radiomics nomogram can predict pCR  Treatment Response 145 
    in locally advanced disease

Gastric CT Response  43 Pretreatment radiomic analysis can predict pulsed Treatment Response 146 
  to radiation  low-dose radiation response 

Hodgkin PET Unresponsive 251 PET radiomics model improved upfront patient Treatment Response 67 
Lymphoma  tumors  stratification, predicting primary refractory disease  
    as well as those who were successfully salvaged  
    vs those who died from disease 

NSCLC CT Response  20 Daily CT scans during radiation can be used to Treatment Response 147 
  to radiation  assess for early treatment response 

Breast MRI pCR 35 Heterogeneity within tumor subregions associated  Treatment Response 148 
    with fast washout on DCE-MRI predicted pCR after  
    neoadjuvant chemotherapy 

Key: chemoRT = chemoradiation, CT = computed tomography, CBCT = cone-beam CT, DFS = disease-free survival, DM = distant metastasis, 
DSS = disease-specific survival, DCE-MRI = dynamic contrast-enhanced MRI, EGFR = epidermal growth factor receptor, FFDM = freedom from 
distant metastasis, GBM = glioblastoma multiforme, HNSCC = head and neck squamous cell carcinoma, HPV = human papilloma virus, IMRT 
= intensity-modulated radiotherapy, LR = local recurrence, LRC = locoregional control, NSCLC = non-small cell lung cancer, MRI = magnetic 
resonance imaging, OS = overall survival, pCR = pathologic complete response, PET = positron emission tomography, PFS = progression-free 
survival, PI-RADS = Prostate Imaging-Reporting and Data System, RC = regional control, RFS = relapse-free survival, SBRT = stereotactic body 
radiation therapy
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Utility of Radiogenomics
There are 2 definitions of “radiog-

enomics” in the literature: 1) the study 
of genetic variation associated with ra-
diation therapy response,84,85 and 2) the 
study of the relationship between gene 
expression patterns and imaging pheno-
types;86,87 we refer to the latter. 

One application of radiogenomics 
is to identify tumor imaging correlates 
of specific genomic attributes, which 
may provide a noninvasive alternative 
to biopsy.88,89 Multiple recent studies 
have shown the ability for MRI-based 
features to predict molecular subtypes 
and hormone receptor status in breast 
cancer.90,91 Other studies have demon-
strated that radiomics can predict the 
presence of epidermal growth factor 
receptor (EGFR) mutations by PET fea-
tures92 and CT features.93 Additionally, 
radiomics may be able to predict pro-
grammed death-ligand (PDL1) expres-
sion,94 human papilloma virus (HPV) 
status95 or a PTEN mutation.96

Others have shown that integrat-
ing radiomic and genomic data into a 
single model can improve prognostic 
power. For example, Badic et al used 
CT features and gene expression in col-
orectal cancer to improve patient strati-
fication97 and Kickingereder et al found 
that an MRI signature combined with 
molecular and clinical data improved 
outcome prediction in glioblastoma.98

Pathways to Clinical Application
Genomic medicine has provided 

substantial insights into tumor biology 
and this has been exploited by medical 
oncologists in several facets of clinical 
practice and trial development.152 An 
advantage medical oncology has over 
radiation oncology in utilizing genomic 
information, is access to numerous bio-
marker panels with established FDA-ap-
proved targeted therapies. In contrast, 
commonly, radiation is an “add-on” 
modality in genomic-based trials, such 
as those with Oncotype Dx (TAILOR 

RT; NCT03488693), targeted therapies 
(NCT03667820), conventional che-
motherapy (NCT03609216) or immu-
notherapies.154 Although not formally 
developed to assess radiation efficacy, 
several molecular classifiers are being 
employed in breast cancer to make de-
cisions for treatment intensification or 
omission.153 

Our institution is planning to initiate 
the first genomic-based prospective clin-
ical trials to guide radiation therapy dose 
in early 2020. As part of this effort, RSI 
is being established in the CLIA mo-
lecular laboratory at Moffitt, which will 
allow us to use RSI and GARD in clini-
cal trials. Our initial focus will be in head 
and neck cancer where we will use RSI/
GARD to guide radiation dose de-esca-
lation for HPV-positive head and neck 
cancer patients. A second trial in triple 
negative breast cancer will utilize the 
RSI/GARD model to decide whether pa-
tients should receive a boost to the tumor 
bed following whole-breast radiation.

Radiomics has the potential to sig-
nificantly improve precision medicine 
in the diagnosis, prognostication, and 
treatment planning for cancer patients. 
However, the current literature is lim-
ited by its retrospective nature, as well 
as significant heterogeneity between 
studies. To improve the quality, stan-
dardization, and reproducibility of fu-
ture studies, Lambin et al developed 
the radiomics quality score (RQS), a 
homogeneous evaluation criterion that 
assesses radiomics studies based on 16 
key components.45,151 Vallieres et al em-
phasized the importance of designing 
high-quality, fully transparent, and ac-
cessible studies to improve the clinical 
translation of radiomics.150 Ongoing pro-
spective clinical trials are investigating 
the utility of radiomics to inform clinical 
decision-making in the treatment of he-
patocellular carcinoma (NCT03917017), 
prostate cancer (NCT03979573), and 
head-and-neck cancer (NCT03953976, 
NCT02666885). A trial in lung cancer 

plans to prospectively collect PET/CT 
data to predict response to immunother-
apy (NCT04007068). However, further 
prospective validation, using the RQS 
as a guideline, is required to fully realize 
the potential of radiomics.

Conclusion
Big data analytics is rapidly pro-

gressing and demonstrates enormous 
potential to change the oncologic deci-
sion-making landscape. As improve-
ments continue in bioinformatics, 
image analysis, statistical/machine 
learning models, and end-user expe-
rience with data interpretation, inte-
gration into the clinical workflow of a 
radiation oncologist is bound to occur 
soon. Genomics and radiomics provide 
an opportunity to increase the precision 
of radiation delivery in selection of dose 
and spatial delivery. Our field should 
openly embrace these tools and take the 
needed steps away from a “one-size-
fits-all” philosophy. 
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Medical images represent an-
atomical and/or functional 
facsimiles of the human 

body. As such, they serve a critical 
role in the diagnosis of diseases and the 
evaluation of treatment response. Cur-
rent interpretations of the images by 
radiologists comprise an anthropogenic 
synopsis of 2-dimensional (2D) or 3-di-
mensional (3D) spatial data. Despite 
extensive efforts at standardization, 
evaluations continue to depend on the 
individual evaluating the images, re-
sulting in variation of interpretation.

Radiomics is an emergent method-
ology within image analysis in which 
quantitative data is acquired using au-
tomated analysis techniques (Figure 
1).1-4 The extracted information, also 
known as image features, can be com-
bined with orthogonal data (eg, clinical 
data or biological measures [ie, muta-
tions, transcriptomic panels, etc.]) to 
build prediction models for diagnosis or 
treatment selection. These strategies are 

poised to offer a more quantitative and 
objective basis for informed medical 
decision-making.1,5,6 

The tripartite mainstays of cancer 
treatment include radiation therapy, 
chemotherapy, and surgery. These 
treatments extensively utilize medical 
images for diagnosis and to monitor ef-
ficacy. The imaging modalities most 
commonly used include computed to-
mography (CT), magnetic resonance 
imaging (MRI), and positron emission 
tomography (PET). The frequent utiliza-
tion of these technologies provides clin-
ical practices, even those with modest 
patient volumes, an extensive collection 
of mineable image data. Indeed, radio-
mics features have already been associ-
ated with improved diagnosis accuracy 
in cancer,7 specific gene mutations,8 and 
treatment responses to chemotherapy 
and/or radiation therapy in the brain,9,10 
head and neck,11,12 lung,13-17 breast,18,19 
and abdomen.20 More recently, radiom-
ics features integrated into a multitasked 

neural network were combined with 
clinical data to derive a personalized 
radiation dose for patients treated with 
stereotactic lung radiation therapy.21 
Altogether, these developments sug-
gest that the integration of image data  
to inform clinical care is on the horizon. 

Herein, we review recent develop-
ments in radiomics, its applications 
to lung cancer treatments, and the 
challenges associated with radiom-
ics as a tool for precision diagnostics 
and theranostics. 

Methodology
A general workflow of radiomics 

is depicted in Figure 2. At the data col-
lection stage, imaging data is combined 
with clinical and histopathological data. 
Image data must undergo additional 
steps before downstream analyses, 
however, including region-of-interest 
segmentation, and feature and texture 
extraction. Based on the classification 
task at hand (eg, local failure after radi-
ation, progression-free survival after im-
munotherapy, etc.), researchers can then 
proceed to the next stage, the training 
and validation of the radiomics model. 
After training and validation, a dataset 
that the algorithm has not yet seen (test 
or holdout set) is used to evaluate the 
model. If the model is shown to be ac-
curate, it may potentially provide clini-
cians with improved decision-making 
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capabilities. Transportability testing 
(using a dataset from a distinct but plau-
sibly related population) of the model is 
also critical since it can help determine 
whether the model can be implemented 
more broadly in other settings. To es-
tablish transportability, an independent 
dataset external to the primary institu-
tion should be used. 

Data Collection 
The first step in radiomics is data 

acquisition. A large sample size is re-
quired because of the complexity of the 
prediction task. Since machine learning 
and neural network-based models can 
learn multifactorial, nonlinear relation-
ships between image-based predictors 
and outcomes, models can inadver-
tently too closely fit or “memorize” the 
data they are built on. This can lead to 
poor performance on previously unseen 
data, a phenomenon known as over-
fitting. To mitigate overfitting, large 
datasets and other strategies are imple-
mented to build improved and more 
generalizable models. 

Although first developed using CT 
images, radiomic methodologies have 
also been implemented for other modal-
ities such as MRI, PET, and ultrasound 

(US). Models are usually built on a sin-
gle modality to ensure the consistent 
treatment of images in the preprocess-
ing pipeline. Images and clinical data 
used to build a radiomic model can be 
gathered from single or multiple institu-
tions. To ensure standardization among 
the data presented to the model, there 
are critical quality assurance steps at 
both the data acquisition and prepro-
cessing steps. Standardization of im-
aging protocols and having a clearly 
defined, universally applicable prepro-
cessing pipeline are critical for model 
reproducibility.

At the time of imaging, acquisition 
and reconstruction parameters such as 
voxel size and gray-level discretization 
are central to achieving reproducible 
results. Other factors that may affect 
stability of radiomic features include 
respiratory motion and use of IV con-
trast. It has been previously shown 
that inter-CT scanner variability22 and 
variability of random noise23 may af-
fect the stability of radiomic features. 
To decrease variability of the features 
during the collection process, resam-
pling and image cropping to a uniform 
spacing and size prior to extracting 
features is recommended.24-26 Another 

data optimization technique involves 
clipping and normalizing voxel intensi-
ties. Lastly, data augmentation through 
preprocessing transformations or data 
generation using neural networks can 
increase the data available to a nascent 
radiomic model.27

Segmentation
Delineation of the tumor and normal 

tissue is a crucial first step in both radi-
ation therapy and radiomics, directly in-
fluencing the performance of radiomic 
models.28 Appropriate segmentation 
is critical to models that extract pre-
defined features directly, as well as to 
neural models, which can be trained to 
emphasize the designated areas. Iden-
tifying the section of the image to be 
used for segmentation and extraction of 
radiomic features is a topic of ongoing 
investigation. Traditionally, features 
are extracted from the segmented tumor 
region. However, there is also increas-
ing interest in image characteristics ad-
jacent and external to the gross tumor 
volume. For example, Dou et al29 have 
shown the possibility to improve mul-
tivariate models to predict the risk of 
distant metastasis by extracting features 
from the peritumoral region.

FIGURE 1. The number of published manuscripts in radiomics has significantly increased in the last several years, representing growing inter-
est and development in this field.



26       n        APPLIED RADIATION ONCOLOGY                                    www.appliedradiationoncology.com December  2019

AN EMERGENT ROLE FOR RADIOMIC DECISION SUPPORT IN LUNG CANCER

applied radiation oncology

SA-CME (see page 23)

There are certain obvious challenges 
with manual segmentation: Tumors may 
be near tissue with similar characteris-
tics, making it difficult to distinguish 
between the two structures. Moreover, 
medical images may have distortions 
due to random noise, imaging resolu-
tion, and artifacts. To reduce intra- and 
interobserver variability, automatic or 
semi-automatic segmentation may im-
prove the stability of radiomic features. 
Various methods have been proposed for 
semi-automatic segmentation.30,31 With 
recent advances in deep-learning algo-
rithms, fully automatic segmentation 
methods have also been developed.32 

Feature Extraction 
Originally, radiomic models were 

developed from predefined, “hand-
crafted” features consisting of algebraic 
representations of voxel intensities. 
This structured data can be analyzed 
with classical statistics or with machine 
learning and neural networks. More re-
cently, convolutional neural networks 
have been implemented to directly learn 
properties of the image, allowing for the 
extraction of features beyond those con-
ceived and crafted by humans. Aspects 

from either or both methodologies can 
then be merged into a representative 
quantity (or quantities) known as an 
image signature.

Features can be categorized based 
on origin. Semantic features are those 
currently used in clinical practice as 
visualized and described by the radiol-
ogist. Radiomics complements these 
with nonsemantic, quantitatively and 
systematically extracted features, based 
on voxel intensity. Classic quantitative 
radiomic features can be further cate-
gorized as structural, first, second, and 
higher order. Structural features are 
the most basic descriptive and derived 
measures such as tumor volume, shape, 
maximum diameter, and surface area. 
These features can help quantify tumor 
spiculation and other factors that may 
indicate tumor malignancy. First-or-
der features refer to simple statistical 
quantities such as mean, median, and 
maximum gray-level values found 
within the segmented tumor. Extract-
ing second-order, or textural features, 
quantifies statistical inter-relationships 
between neighboring voxels. This pro-
vides a measure of spatial relationship 
between the voxel intensities in the 

tumor, which may allow for the de-
termination of tissue heterogeneity.33 
Higher-order statistical features are 
extracted by applying filters and trans-
formations to the image. Two of the 
most popular methods are the Lapla-
cian transforms of Gaussian-filtered 
images and wavelet transforms. Such 
higher-order methods increase the num-
ber of features extracted by the order 
of magnitude of filters applied. This al-
lows identification of image attributes 
based on various spatial frequency pat-
terns. Lastly, incorporating the change 
in radiomic features over time, or delta 
radiomic features, has been shown to 
improve lung cancer incidence,34 over-
all survival, and metastases prediction.35

Deep learning, a subset of machine 
learning, uses a neural network model 
that mimics the connectivity of a bio-
logical brain to identify complex ab-
stractions of patterns using nonlinear 
transformations. Neural network mod-
els learn directly from unstructured 
data such as images through convolu-
tional layers that synthesize voxel in-
tensities into representative features. 
Deep-learning approaches typically 
require more data, a challenge that can 

FIGURE 2. The process of constructing a radiomic model occurs in parallel with patient imaging, diagnosis and treatment. Once finalized, the 
model informs each of these areas, which rapidly develop. Advancements in these areas are highlighted in this paper.
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be mitigated through various techniques 
such as data augmentation36 and transfer 
learning.37

Feature Selection 
Manual feature extraction can result 

in thousands of radiomic features, some 
of which are redundant. In a dataset 
with clinical events (eg, local failure 
after radiation therapy) occurring at 
much lower magnitudes, inclusion of 
large-scale parameters with low event 
rates can contribute to model overtrain-
ing or overfitting. Utilization of feature 
selection techniques can help alleviate 
this potential pitfall. 

Radiomic feature selection methods 
focus on stability of features, feature in-
dependence, and feature relevance. The 
stability of features may be analyzed 
with a test-retest dataset in which mul-
tiple images of the same modality are 
taken over a relatively short period to test 
whether such features are reproducible.38 
Feature independence is assessed by sta-
tistical methods testing the correlation 
between the features themselves, such 
as principal component analysis (PCA). 
Feature selection based on relevance 
can be done with a univariate approach, 
testing whether each individual feature 
is correlated with the outcome being in-
vestigated, or a multivariate approach, 
which analyzes the combined predictive 
power of the features.

Parmar et al11 used clustering as a 
method to contend with the large number 
of quantitative features. The high-dimen-
sional feature space was reduced into 
radiomic clusters, with clusters being 
predictive of patient survival, tumor 
stage and histology. Alternatively, neu-
ral networks have been shown to learn 
increasingly detailed geometries in each 
subsequent convolutional layer, and can 
be used to generate a set of highly de-
scriptive image features.39

Development of Predictive Models
A predictive model is then constructed 

from the extracted relevant features  

creating a “radiomic signature.” De-
pending on the task at hand, various 
prediction models can be utilized (eg, 
classification and survivability models). 
Classification models categorize data 
into known categories (eg, tumor is be-
nign or malignant). Survivability models 
require additional time-related informa-
tion about the patients being treated, 
and aim to predict the time to failure or 
survival of patients undergoing a cer-
tain treatment. One approach to predict 
time-to-event clinical outcomes is by 
making the image signature equivalent 
to the logarithm of the hazard ratio in a 
Cox regression model.21,40 Other ma-
chine-learning methods can then be used 
with either manually extracted features 
or the outputs of neural network models 
to derive prediction scores.

Validation
To show that the radiomic model 

is generalizable, it must be validated. 
Model validation on an independently 
obtained external dataset is recom-
mended. The model is usually analyzed 
using the receiver operating characteris-
tic (ROC) curve with the area under the 
curve (AUC) being the commonly re-
ported value in discrimination analysis. 
Model validation should be repeated on 
a target population prior to its deploy-
ment to ensure transportability. 

Challenges and Opportunities
The rapid proliferation of radiomics 

applications has fueled optimism that 
medical images can be utilized to better 
guide clinicians in the recommenda-
tion of optimal treatment strategies. As 
with every technique and technology, 
however, certain challenges require at-
tention to create and implement a robust 
radiomics model.

Data Sharing
Collecting and sharing data over 

multiple institutions or hospitals is a 
significant limitation to model develop-
ment and testing. A single institution or 

hospital typically does not have enough 
events to establish and test a transport-
able radiomics model. To address this 
need, multiple data-sharing networks 
have been established to house shared 
data such as the Cancer Imaging Ar-
chive41 and the Quantitative Imaging 
Network.42 Contributions of well-anno-
tated data to the shared datasets or col-
laborations between multiple institutes 
are critical for future model develop-
ment and implementation. 

Data Standardization
In multi-institutional radiomics stud-

ies, it is rare that all institutes share the 
same imaging acquisition settings such 
as imaging modality, protocol, or re-
construction algorithm. Additionally, 
image segmentation and interpretation 
of the data may be highly subjective 
and prone to human variations. While 
a highly standardized dataset will more 
likely guarantee a consistent model and 
reproducible predictions, this is an im-
practical expectation of a large dataset, 
especially in a multi-institutional set-
ting. Data cleaning and preprocessing 
can mitigate these challenges through 
selection of similarly annotated images, 
image resampling, retrospective seg-
mentation, and even translation of one 
modality to another.43 Additionally, the 
robustness of radiomic models built on 
multi-institutional datasets can be in-
herently higher since they are less prone 
to overfitting caused by a single institu-
tional standard. 

Model Evaluation
Although radiomic models may be 

highly performant on the data on which 
they are built, prediction results may be 
affected when implemented into real 
clinical settings due to model under-or 
overfitting. Therefore, it is crucial to use 
independent, external datasets to evaluate 
the predictive power of the established 
radiomic signature. Additionally, the ra-
diomic model should be trained on new 
data as the standard of care continues to 



28       n        APPLIED RADIATION ONCOLOGY                                    www.appliedradiationoncology.com December  2019

AN EMERGENT ROLE FOR RADIOMIC DECISION SUPPORT IN LUNG CANCER

applied radiation oncology

SA-CME (see page 23)

improve for it to adapt to new treatment 
protocols and prognosis, as well as to 
better quantify its accuracy. A reliable 
method to maintain an up-to-date radio-
mics model can be as critical as estab-
lishing the initial model. As data-sharing 
archives41,42 (noted above) become more 
prevalent, the need for large volumes 
of current, external images will be met. 
Since radiomic models can be deployed 
through online or locally hosted software, 
they are highly movable even if the inde-
pendent data on which they are evaluated 
is not. 

Model Interpretation
Since radiomics is a fairly new con-

cept and model structures are inherently 
abstruse (representing a black box), 
questions and concerns are often raised 
toward the ultimate implementation of 
radiomic models. Physician skills and 
intuition are honed over years of train-
ing and experience. There is anticipated 
to be a gulf of trust between physicians’ 
“gestalt” and experience-driven ap-
proaches with the current difficult-to-in-
terpret output of artificial intelligence 
systems. Efforts to improve the inter-
pretability of predictive models include 
feature selection through bootstrapping44 
as well as development of saliency maps 
highlighting the relative importance of 
voxels to the predicted outcome.21 The 
implication that radiomic models man-
ifest underlying biology by being able 
to classify histological subtypes45,46 and 
gene mutations47,48 makes the associ-
ation between genetics and radiomics 
an active area of research. This type of 
integrative analyses of known risk fac-
tors is needed to explain the meaning of 
radiomic features. Promoting enhanced 
interpretability of radiomic and neu-
ral-network-derived models will be a 
critical step to catalyze implementation 
as a decision-support tool. 

Potential Applications
A growing number of studies show the 

value of radiomics as a tool to augment 

clinical decision-making, with signifi-
cant progress in applying radiomics to 
lung cancer diagnosis, treatment, and risk 
evaluation.

Investigative Models
Aerts et al38 created a radiomic sig-

nature prognostic of overall survival in 
independent cohorts of patients based 
on intensity, shape, textural, and wave-
let features. The features were selected 
based on stability using test-retest CT 
scans, independence, and univariate pre-
dictive capability of the features before 
constructing a multivariate model in-
cluding the top feature from each of the 
four feature groups. Several radiomics 
studies have shown diagnostic potential 
in CT-based models to discriminate can-
cerous tumors from benign nodules. 

A number of studies have also ap-
plied radiomics to predict histology 
based on pretreatment CT images45,46 
and radiogenomics to identify the tu-
mors’ underlying gene expression.47,48 
Currently, histological classification 
and genetic subtyping depend on bi-
opsies and re-biopsies. If radiomics 
methods achieve clinical levels of ac-
curacy, it may allow patients to forego 
numerous invasive biopsies. For exam-
ple, Wang et al47 showed that it is pos-
sible to create a deep neural network 
using CT images to provide an accurate 
method to establish epidermal growth 
factor receptor (EGFR) status in lung 
adenocarcinoma patients, potentially 
reducing the need for biopsy.

Another set of studies looked at the 
prognostic and predictive possibilities 
of using the radiomic approach—an 
important area in precision medicine 
because it informs the creation of an op-
timal treatment plan. Such studies predict 
probability of response to treatment,49 
survival,50,51 and risk of metastases.29,52

Extending classification and sur-
vivability models to guide treatment, 
Lou et al21 developed an image-based, 
deep-learning framework for the indi-
vidualizing of radiation therapy dose. 

First a risk score was identified by a 
deep neural network, Deep Profiler. 
This signature outperformed classical 
radiomic features in predicting treat-
ment outcome. This framework also in-
corporates a model to project optimized 
radiation dose to minimize treatment 
failure probability. 

Hosny et al36 trained deep neural net-
works to stratify patients into low- and 
high-mortality risk groups, and were 
also able to outperform models based 
on classical radiomic features as well as 
clinical parameters. The neural network 
predictions were largely stable when 
tested against imaging artifacts and 
test-retest scans. In addition, there was a 
suggestion that deep-learning extracted 
features may be associated with biologi-
cal pathways including cell cycle, DNA 
transcription, and DNA replication. 

Altogether, radiomics could poten-
tially serve an important complemen-
tary role to other orthogonal data such 
as genetic and clinical information to 
improve assessment of clinical charac-
teristics and molecular information. 

Deployment
The models discussed have trans-

lation potential because they could be 
integrated into clinical practice upon 
additional and prospective validation. 
Imaging is a mainstay of clinical use, 
and software deployment of radiomic 
models are noninvasive and, if designed 
with user input, can be seamlessly in-
tegrated into daily workflow for the 
intended specialist (eg, radiologist or 
radiation oncologist). 

There are a several avenues of im-
plementation for software facilitating 
radiomic analyses into routine clinical 
practice. These include improved seg-
mentation through semi-automatic or 
automatic contouring, which can be 
achieved by traditional image analysis 
techniques such as region-growing,30,31 
convolutional techniques such as neu-
ral network-based segmentation,32 or 
“smart-contouring” techniques based 
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on the regions of an image determined 
to be salient based on a deep-learning 
model.21 Another promising area for 
integration is risk-profiling. Modeling 
risk can be achieved through a software 
package paired with an institution’s 
existing imaging server. This should 
minimize significant disruption of the 
existing clinical workflow. As with any 
method of risk-profiling, predictive ra-
diomic models could serve as an advi-
sory decision-support tool in the hands 
of the radiologist and radiation oncolo-
gist. Specifically, radiomic models that 
both model and mitigate the risks are 
poised to alter the clinical paradigm(s). 
Adjusting treatment strategies through 
dose-specific21 or targeted agent-spe-
cific recommendations represent pos-
sible uses that could improve clinical 
outcomes in select patient populations. 
As with segmentation and risk-profil-
ing, these applications can be achieved 
through software deployment. 

Lastly, while other biomarkers are 
likely to represent critical orthogonal 
inputs to more accurately predict clin-
ical outcomes, it is possible that tumor 
intrinsic determinants (ie, genetic alter-
ations, RNA gene expression, etc.) can 
be detected by radiomic features, as 
suggested.38,53 Additional studies that 
seek to determine whether these classes 
of variables (image vs biology) are tau-
tological, orthogonal or somewhere in 
between will be critical to assessing the 
need for additional inputs into the mod-
els. Convergence toward an integrative 
approach that incorporates these varied 
inputs is likely unavoidable in order to 
improve model accuracy and ultimate 
clinical deployment. 

Conclusions
Radiomics is a computational image 

evaluation technique that integrates 
medical images, clinical data, and ma-
chine learning. Despite hurdles to im-
plementation, radiomic models show 
immense potential for personalized 
lung cancer diagnosis, risk profiling, 

and treatment due to their ability to in-
corporate image characteristics beyond 
the ken of the human observer. 

RefeRences
1. Lambin P, Rios-Velazquez E, Leijenaar R, et 
al. Radiomics: extracting more information from 
medical images using advanced feature analysis. 
Eur J Cancer. 2012;48(4):441-446. doi:10.1016/j.
ejca.2011.11.036 
2. Parekh V, Jacobs MA. Radiomics: a new appli-
cation from established techniques. Expert Rev 
Precis Med Drug Dev. 2016;1(2):207-226. doi:10.
1080/23808993.2016.1164013 
3. Gillies RJ, Kinahan PE, Hricak H. Radiomics: 
images are more than pictures, they are data. 
Radiology. 2016;278(2):563-577. doi:10.1148/
radiol.20151511694. 
4. Rizzo S, Botta F, Raimondi S, et al. Radiomics: 
the facts and the challenges of image analysis. Eur 
Radiol Exp. 2018;2(1). doi:10.1186/s41747-018-
0068-z 
5. Bi WL, Hosny A, Schabath MB, et al. Artificial 
intelligence in cancer imaging: clinical challenges 
and applications. CA Cancer J Clin. February 
2019. doi:10.3322/caac.21552
6. Morin O, Vallières M, Jochems A, et al. A 
deep look into the future of quantitative imag-
ing in oncology: a statement of working prin-
ciples and proposal for change. Int J Radiat 
Oncol. 2018;102(4):1074-1082. doi:10.1016/j.
ijrobp.2018.08.032
7. Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-
end lung cancer screening with three-dimensional 
deep learning on low-dose chest computed tomog-
raphy. Nat Med. 2019;25(6):954. doi:10.1038/
s41591-019-0447-x
8. Karlo CA, Di Paolo PL, Chaim J, et al. Radioge-
nomics of clear cell renal cell carcinoma: associa-
tions between ct imaging features and mutations. 
Radiology. 2014;270(2):464-471. doi:10.1148/
radiol.13130663
9. Zhang Z, Yang J, Ho A, et al. A predictive model 
for distinguishing radiation necrosis from tumour 
progression after Gamma Knife radiosurgery 
based on radiomic features from MR images. 
Eur Radiol. 2018;28(6):2255-2263. doi:10.1007/
s00330-017-5154-8
10. Kickingereder P, Burth S, Wick A, et al. Radio-
mic profiling of glioblastoma: identifying an imag-
ing predictor of patient survival with improved 
performance over established clinical and radio-
logic risk models. Radiology. 2016;280(3):880-
889. doi:10.1148/radiol.2016160845
11. Parmar C, Leijenaar RTH, Grossmann P, et al. 
Radiomic feature clusters and prognostic signa-
tures specific for lung and head & neck cancer. Sci 
Rep. 2015;5(1). doi:10.1038/srep11044
12. Giraud P, Giraud P, Gasnier A, et al. Radio-
mics and machine learning for radiotherapy in 
head and neck cancers. Front Oncol. 2019;9. 
doi:10.3389/fonc.2019.00174
13. Causey JL, Zhang J, Ma S, et al. Highly 
accurate model for prediction of lung nodule 
malignancy with CT scans. Sci Rep. 2018;8(1). 
doi:10.1038/s41598-018-27569-w

14. Choi W, Oh JH, Riyahi S, et al. Radiomics 
analysis of pulmonary nodules in low-dose CT 
for early detection of lung cancer. Med Phys. 
2018;45(4):1537-1549. doi:10.1002/mp.12820
15. Chen L, Huang B, Huang X, Cao W, Sun W, 
Deng X. Clinical evaluation for the difference of 
absorbed doses calculated to medium and cal-
culated to water by Monte Carlo method. Radiat 
Oncol. 2018;13(1). doi:10.1186/s13014-018-
1081-3
16. Han F, Wang H, Zhang G, et al. Texture feature 
analysis for computer-aided diagnosis on pulmo-
nary nodules. J Digit Imaging. 2015;28(1):99-115. 
doi:10.1007/s10278-014-9718-8
17. Liu K, Kang G. Multiview convolutional neural 
networks for lung nodule classification. Int J Imag-
ing Syst Technol. 2017;27(1):12-22. doi:10.1002/
ima.22206
18. Antropova N, Huynh BQ, Giger ML. A deep 
feature fusion methodology for breast cancer 
diagnosis demonstrated on three imaging modal-
ity datasets. Med Phys. 2017;44(10):5162-5171. 
doi:10.1002/mp.12453
19. Parekh VS, Jacobs MA. Integrated radio-
mic framework for breast cancer and tumor 
biology using advanced machine learning 
and multiparametric MRI. Npj Breast Cancer. 
2017;3(1). doi:10.1038/s41523-017-0045-3
20. Hou Z, Yang Y, Li S, et al. Radiomic analysis 
using contrast-enhanced CT: predict treatment 
response to pulsed low dose rate radiotherapy in 
gastric carcinoma with abdominal cavity metasta-
sis. Quant Imaging Med Surg. 2018;8(4):410-420. 
doi:10.21037/qims.2018.05.01
21. Lou B, Doken S, Zhuang T, et al. An image-
based deep learning framework for individ-
ualising radiotherapy dose: a retrospective 
analysis of outcome prediction. Lancet Digit 
Health. 2019;1(3):e136-e147. doi:10.1016/S2589-
7500(19)30058-5
22. Mackin D, Fave X, Zhang L, et al. Measuring 
computed tomography scanner variability of radio-
mics features. Invest Radiol. 2015;50(11):757-
765. doi:10.1097/RLI.0000000000000180
23. Midya A, Chakraborty J, Gönen M, Do RKG, 
Simpson AL. Influence of CT acquisition and 
reconstruction parameters on radiomic feature 
reproducibility. J Med Imaging. 2018;5(01):1. 
doi:10.1117/1.JMI.5.1.011020
24. Larue RTHM, van Timmeren JE, de Jong EEC, 
et al. Influence of gray level discretization on radio-
mic feature stability for different CT scanners, tube 
currents and slice thicknesses: a comprehensive 
phantom study. Acta Oncol. 2017;56(11):1544-
1553. doi:10.1080/0284186X.2017.1351624
25. Shafiq-ul-Hassan M, Latifi K, Zhang G, Ullah 
G, Gillies R, Moros E. Voxel size and gray level 
normalization of CT radiomic features in lung can-
cer. Sci Rep. 2018;8(1). doi:10.1038/s41598-018-
28895-9
26. Shafiq-ul-Hassan M, Zhang GG, Latifi K, et al. 
Intrinsic dependencies of CT radiomic features on 
voxel size and number of gray levels. Med Phys. 
2017;44(3):1050-1062. doi:10.1002/mp.12123
27. Wang J, Mall S, Perez L. The effectiveness of 
data augmentation in image classification using 
deep learning. In: Standford University research 
report, 2017.



30       n        APPLIED RADIATION ONCOLOGY                                    www.appliedradiationoncology.com December  2019

AN EMERGENT ROLE FOR RADIOMIC DECISION SUPPORT IN LUNG CANCER

applied radiation oncology

SA-CME (see page 23)

28. Haga A, Takahashi W, Aoki S, et al. Classifi-
cation of early stage non-small cell lung cancers 
on computed tomographic images into histolog-
ical types using radiomic features: interobserver 
delineation variability analysis. Radiol Phys Tech-
nol. 2018;11(1):27-35. doi:10.1007/s12194-017-
0433-2
29. Dou TH, Coroller TP, van Griethuysen JJM, 
Mak RH, Aerts HJWL. Peritumoral radiomics 
features predict distant metastasis in locally 
advanced NSCLC. Lee H-S, ed. PLOS ONE. 
2018;13(11):e0206108. doi:10.1371/journal.
pone.0206108
30. Lassen BC, Jacobs C, Kuhnigk J-M, Ginneken 
B van, Rikxoort EM van. Robust semi-automatic 
segmentation of pulmonary subsolid nodules in 
chest computed tomography scans. Phys Med 
Biol. 2015;60(3):1307-1323. doi:10.1088/0031-
9155/60/3/1307
31. Velazquez ER, Parmar C, Jermoumi M, et al. 
Volumetric CT-based segmentation of NSCLC 
using 3D-slicer. Sci Rep. 2013;3(1). doi:10.1038/
srep03529
32. Yang X, Pan X, Liu H, et al. A new approach 
to predict lymph node metastasis in solid lung 
adenocarcinoma: a radiomics nomogram. J Tho-
rac Dis. 2018;10(S7):S807-S819. doi:10.21037/
jtd.2018.03.126
33. Lubner MG, Smith AD, Sandrasegaran K, 
Sahani DV, Pickhardt PJ. CT texture analysis: 
definitions, applications, biologic correlates, and 
challenges. RadioGraphics. 2017;37(5):1483-
1503. doi:10.1148/rg.2017170056
34. Cherezov D, Hawkins SH, Goldgof DB, et al. 
Delta radiomic features improve prediction for lung 
cancer incidence: a nested case-control analysis 
of the National Lung Screening Trial. Cancer Med. 
2018;7(12):6340-6356. doi:10.1002/cam4.1852
35. Fave X, Zhang L, Yang J, et al. Delta-radiom-
ics features for the prediction of patient outcomes 
in non–small cell lung cancer. Sci Rep. 2017;7(1). 
doi:10.1038/s41598-017-00665-z

36. Hosny A, Parmar C, Coroller TP, et al. Deep 
learning for lung cancer prognostication: a ret-
rospective multi-cohort radiomics study. Butte 
AJ, ed. PLOS Med. 2018;15(11):e1002711. 
doi:10.1371/journal.pmed.1002711
37. Pan SJ, Yang Q. A survey on transfer learning. 
IEEE Trans Knowl Data Eng. 2010;22(10):1345-
1359. doi:10.1109/TKDE.2009.191
38. Aerts HJWL, Velazquez ER, Leijenaar RTH, 
et al. Decoding tumour phenotype by nonin-
vasive imaging using a quantitative radiomics 
approach. Nat Commun. 2014;5(1). doi:10.1038/
ncomms5006
39. Zeiler MD, Fergus R. Visualizing and under-
standing convolutional networks. ArXiv13112901 
C s .  N o v e m b e r  2 0 1 3 .  h t t p : / / a r x i v . o r g /
abs/1311.2901. Accessed August 1, 2019.
40. Katzman JL, Shaham U, Cloninger A, Bates J, 
Jiang T, Kluger Y. DeepSurv: personalized treat-
ment recommender system using a Cox propor-
tional hazards deep neural network. BMC Med 
Res Methodol. 2018;18(1). doi:10.1186/s12874-
018-0482-1
41. Prior F, Smith K, Sharma A, et al. The pub-
lic cancer radiology imaging collections of The 
Cancer Imaging Archive. Sci Data. 2017;4(1). 
doi:10.1038/sdata.2017.124
42. Clarke LP, Nordstrom RJ, Zhang H, et al. The 
Quantitative Imaging Network: NCI’s historical 
perspective and planned goals. Transl Oncol. 
2014;7(1):1-4. doi:10.1593/tlo.13832
43. Lei Y, Harms J, Wang T, et al. MRI-only 
based synthetic CT generation using dense cycle 
consistent generative adversarial networks. 
Med Phys. 2019;46(8):3565-3581. doi:10.1002/
mp.13617
44. Peikert T, Duan F, Rajagopalan S, et al. Novel 
high-resolution computed tomography-based 
radiomic classifier for screen-identified pulmo-
nary nodules in the National Lung Screening Trial. 
PLOS ONE. 2018;13(5):e0196910. doi:10.1371/
journal.pone.0196910

45. Wu W, Parmar C, Grossmann P, et al. Explor-
atory Study to identify radiomics classifiers for 
lung cancer histology. Front Oncol. 2016;6. 
doi:10.3389/fonc.2016.00071
46. Ferreira Junior JR, Koenigkam-Santos M, Cip-
riano FEG, Fabro AT, Azevedo-Marques PM de. 
Radiomics-based features for pattern recognition 
of lung cancer histopathology and metastases. 
Comput Methods Programs Biomed. 2018;159:23-
30. doi:10.1016/j.cmpb.2018.02.015
47. Wang S, Shi J, Ye Z, et al. Predicting EGFR 
mutation status in lung adenocarcinoma on 
computed tomography image using deep 
learning. Eur Respir J. 2019;53(3):1800986.
doi:10.1183/13993003.00986-2018
48. Liu Y, Kim J, Balagurunathan Y, et al. Radio-
mic features are associated with EGFR muta-
tion status in lung adenocarcinomas. Clin Lung 
Cancer. 2016;17(5):441-448.e6. doi:10.1016/j.
cllc.2016.02.001
49. Aerts HJWL, Grossmann P, Tan Y, et al. 
Defining a radiomic response phenotype: a pilot 
study using targeted therapy in NSCLC. Sci Rep. 
2016;6(1). doi:10.1038/srep33860
50. Huynh E, Coroller TP, Narayan V, et al. 
CT-based radiomic analysis of stereotactic body 
radiation therapy patients with lung cancer. Radio-
ther Oncol. 2016;120(2):258-266. doi:10.1016/j.
radonc.2016.05.024
51. Huang Y, Liu Z, He L, et al. Radiomics signa-
ture: a potential biomarker for the prediction of dis-
ease-free survival in early-stage (i or ii) non-small 
cell lung cancer. Radiology. 2016;281(3):947-957. 
doi:10.1148/radiol.2016152234
52. Coroller TP, Grossmann P, Hou Y, et al. CT- 
based radiomic signature predicts distant metas-
tasis in lung adenocarcinoma. Radiother Oncol.  
2015;114(3):345-350. doi:10.1016/j.radonc.2015.02.015
53. Bakr S, Gevaert O, Echegaray S, et al. A 
radiogenomic dataset of non-small cell lung 
cancer. Sci Data. 2018;5:180202. doi:10.1038/
sdata.2018.202



global perspectives
applied radiation oncology

www.appliedradiationoncology.com                                          APPLIED RADIATION ONCOLOGY            n       31December  2019

Having spent my entire medical 
and residency training in the 
US, I was fortunate to receive 

the Association of Residents in Radia-
tion Oncology (ARRO) Global Health 
Scholar Award and spend a month as a 
visiting resident in the Department of 
Radiation Oncology at the American 
University of Beirut Medical Center 
(AUB-MC) in Lebanon. 

To describe my experience during 
the elective, I would like to start by in-
troducing Lebanon and AUB-MC. Leb-
anon is a small country (10 452 sq km) 
along the Mediterranean coast in the 
Middle East (Figure 1). According to 
data from the World Bank, Lebanon is 
classified as a middle-income country.1 
While exact numbers are unfortunately 
unavailable due to complex sociopolit-
ical reasons, most recent estimates in-
dicate a Lebanese population of more 
than 6 million, including over 2 million 

refugees (1.5 million Syrians and 0.5 
million Palestinians).2 With respect to 
cancer statistics in Lebanon, the GLO-
BOCAN 2018 report estimates about 
17 294 new cases of cancer (242 cases 
per 100 000) and 8976 deaths due to 
cancer in 2018.3 While overall cancer 
care in Lebanon is significantly better 
than that of many countries in the re-
gion, the quality of care is region- and 
hospital-dependent with remarkable 
variations in access to care (including 

significant variations in screening and 
preventive cancer programs), medica-
tions (including chemotherapies and/
or immunotherapies), imaging, and 
radiation therapy technologies. In ad-
dition to out-of-pocket expenses, the 
medical bill in Lebanon is shared by 
the social security fund (which does not 
cover all citizens), the Ministry of Pub-
lic Health, and private insurance. In an 
already struggling economy plagued by 
political corruption, modern feudalism, 
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radiation delivery in Lebanon
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FIGURE 1. Map of the Middle East showing the geographic proximity of Lebanon, Syria and 
Iraq. Credit: Wikimedia Commons contributors, “File:Syria-Iraq-Lebanon location map.svg,” 
Wikimedia Commons, the free media repository, https://commons.wikimedia.org/w/index.
php?title=File:Syria-Iraq-Lebanon_location_map.svg&oldid=266603958 (accessed Novem-
ber 6, 2019). 
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total neglect of natural resources, and 
decades of regional and civil wars, the 
influx of hundreds of thousands of ref-
ugees from nearby war-torn countries 
has strained the economy even more 
and added more pressures on the health-
care system in Lebanon.  

AUB-MC was originally established 
in 1902 as a 200-bed hospital associ-
ated with the Syrian Protestant College 
(later known as AUB) and has grown 
to become a remarkable hospital and 
medical school with superior patient 
care, medical research, and medical ed-
ucation earning it accreditations from 
the Joint Commission International and 
the Accreditation Council for Graduate 
Medical Education International (Fig-
ure 2). AUB-MC has always strived to 
provide exceptional patient care in the 
community and the region. Similar to 
the efforts of the University Hospital in 
general, the Department of Radiation 
Oncology has provided exceptional ra-
diation therapy services to thousands 
of patients since the 1960s even during 
times of extreme violence from the 
civil war. Currently, the department is 
staffed by 5 radiation oncologists, most 
of whom were trained in the United 
States, and 4 physicists/dosimetrists. 
This team manages an operation that 
uses 2 linear accelerators to deliver 
world-class 3-dimensional conformal 
radiation therapy, image-guided radia-
tion therapy, intensity-modulated radia-
tion therapy, stereotactic body radiation 

therapy, and high dose rate brachyther-
apy, among others, to treat about 70 to 
80 patients a day, while training 4 ra-
diation oncology residents (typically 1 
resident per year). In addition, the radi-
ation oncology department at AUB-MC 
staffs the Nabatieh Governmental Hos-
pital (NBGUH), a public community 
hospital housing a single linear accel-
erator and providing the only radiation 
therapy unit in the south of Lebanon (2 
governorates). In addition to AUB-MC, 
there are about 12 operational linear ac-
celerators in 7 radiation therapy centers 
in Lebanon, with 2 or 3 centers in the 
planning or construction phases. Based 
on the International Atomic Energy 
Agency (IAEA) recommendation for 
needing 1 linear accelerator for every 
500 new cancer cases in any country4 
and assuming 17 294 new cases (see 
above), Lebanon needs about 34 linear 
accelerators to meet the demand of its 
cancer patients. Zeidan and Geara pro-
vide a good review of the status of radi-
ation therapy in Lebanon.5 

During my 1-month stay at AUB- 
MC, I attended daily resident teachings 
(physics and clinical case conferences), 
weekly chart rounds, multiple tumor 
boards, and I shadowed attendings in 
their daily clinics (both at AUB-MC 
and NBGUH). The radiation oncolo-
gists at AUB-MC typically see all kinds 
of malignancies but since the team had 
recently expanded to 5 attending phy-
sicians, the trend has shifted to some 

degree of specialization within the de-
partment. Radiation oncologists, resi-
dents, physicists, nurses and therapists 
at AUB-MC are capable of delivering 
treatment plans adherent to interna-
tional guidelines while at the same 
time operating with tight resources 
and little time. Having been trained at 
the University of Texas Southwestern 
in Dallas, it was interesting to see ra-
diation treatments performed with less 
dependence on daily image guidance 
and custom mold cushions, and with 
significant savings in treatment time. 
Another interesting aspect of practic-
ing radiation oncology and medicine 
in general in Lebanon is the culture 
and stigma around the diagnosis of 
cancer. This cultural paradigm makes 
it difficult for physicians to navigate 
some cases. For example, it was not too 
uncommon to have families visit our 
clinic without the patients because fam-
ilies worry that the emotional burden of 
the diagnosis may affect the patient’s 
response to treatment. 

The most interesting aspect of my 
brief visit was observing Iraqi cancer 
patients traveling from Iraq to get treated 
in Lebanon. Once regarded as a model 
healthcare system in the region with ex-
cellent infrastructure and universal cov-
erage, decades of tyranny, regional wars, 
foreign invasion, terrorism, civil unrest, 
neglect, and deeply rooted corruption in 
all national institutions, Iraq’s health care 
system is now fragmented and unable 

FIGURE 2. Aerial view of Beirut showing the American University of Beirut (AUB). The inset (in red) shows the AUB Medical Center (AUB-MC) 
(A). The main entrance of the AUB-MC is pictured (B), and the radiation oncology department is one story below ground level. New buildings of 
the AUB-MC vision 2020 medical complex are also shown (C). AUB-MC vision 2020 is an ambitious initiative aiming to expand current medical 
facilities and provide state-of-the-art patient care services, medical teaching, and biomedical research to citizens of the Middle East. Photos 
from www.aub.edu.lb and www.aubmc.org.lb
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to provide appropriate medical care, let 
alone cancer care, to Iraqi citizens. This 
instability has led to a significant lack in 
funds, critical infrastructure, and profes-
sional personnel, making optimal health-
care delivery unfeasible. Violence did 
not spare doctors, leading to the death, 
kidnapping, and forced immigration of 
many specialists, causing a significant 
drop in the number of oncologists and 
radiation specialists in most provinces 
including the capital Baghdad.6 Of spe-
cial oncologic and humanitarian sig-
nificance in Iraq is the use of depleted 
uranium-based weaponry during the 
Gulf Wars, which allegedly increased 
the incidence of malignancies in many 
communities.7 Additionally, years of 
embargo against the Saddam Hussein 
regime meant that many cancer treat-
ments and technologies (including but 
not limited to chemotherapies and linear 
accelerators) did not reach Iraqi citizens 
for fear that the regime would use them 
to synthesize chemical weapons. Most 
recently, the health consequences of the 
2003 invasion of Iraq were devastat-
ing8 and the influx of immigrants from 
nearby Syria compounded the prob-
lems.9 With respect to radiation oncol-
ogy services, a recent report indicated 
the presence of 18 mega-voltage ma-
chines (35% of the ideal number of ma-
chines recommended by the IAEA), and 
76 radiation specialist physicians (20% 
of the recommended number).10 Accord-
ingly, Iraq is clearly unable to meet the 
demands of its cancer patients and it is no 
surprise that Iraqi citizens flee to neigh-
boring countries for cancer treatments. 

Every Iraqi patient I met had a unique 
story, but all stories shared similar ele-
ments such as poor access to care in their 
home country; lack of appropriate care 
(wrongful diagnoses or wrongful treat-
ments) leading to disease exacerbation; 

and national security concerns, which 
ultimately prompted travel to Lebanon 
with the hope of cure. As stated above, 
Lebanon does not have enough radia-
tion therapy resources to meet the needs 
of its own citizens. Still, many institu-
tions in Lebanon, including AUB-MC, 
are absorbing these additional needs 
and providing care to Iraqi patients. The 
trip to Lebanon, however, is exhausting 
physically, financially, and emotionally 
to the patients and their families. Un-
fortunately, Iraqi patients pay a portion 
of the medical bill out of pocket in ad-
dition to costs of living (housing, food, 
and transportation) in Lebanon. Many 
patients have witnessed significant de-
lays in their care and did not have an 
appropriate or full medical workup in 
Iraq, which often meant additional costs 
and more treatment delays in Lebanon. 
Often, patients receive part of their care 
in Lebanon (such as radiation) and re-
sume the remaining portions of their 
treatment plan (such as chemotherapy) 
in Iraq, leading to suboptimal and inter-
rupted care. I can only imagine those pa-
tients who leave Iraq for better services 
only to die abroad. Not only would they 
have paid a significant portion of their 
savings or sold precious belongings to 
get treated, but their families must also 
pay for the repatriation of their bodies. 
The current cancer care status in Iraq is 
intolerable and unsustainable. There is 
an utmost need for a long-term plan that 
siphons the investments from a band-aid 
approach to a bold plan for cancer con-
trol focusing on building cancer centers 
in Iraq and training local physicians to 
deliver appropriate care. Anything short 
of that is a waste of time and resources.

In conclusion, I am very appreciative 
of the opportunity provided by ARRO 
and the great time I had at AUB-MC. 
Everyone in the radiation oncology 

department, including physicians, res-
idents, physicists, nurses, therapists, 
and staff, were extremely kind and 
generous. My time in Lebanon and the 
interactions I had were highly insight-
ful. I made new friends in our field and 
learned new ways of delivering radia-
tion therapy. Most importantly, I saw 
first-hand the suffering of patients in 
countries where radiation therapy is not 
available. There is an urgent need for 
radiation therapy services in low- and 
middle-income countries. More inno-
vative entrepreneurial approaches sup-
ported by academicians in the field are 
needed to fill the void.
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Defined as a method that ex-
tracts mineable data from ra-
diographic medical images, 

radiomics can potentially provide in-
formation that an oncologist and/or 
medical physicist may not detect with 
the human eye alone.

As Gillies et al put it, “Radiomics 
are more than pictures, they are data.1 

With the increasing number of data 
recognition tools and the emergence 
of machine learning (ML) and deep 
learning (DL), the ability to extract 
information beyond visual interpre-
tation has become a significant trend. 
An integral component of radiom-
ics is the integration of ML and DL  
algorithms.

“We are at a watershed moment, 
moving away from handcrafted features 
to understand and develop imaging 
biomarkers for evaluating a patient’s 
response to radiation therapy, to a 
black box approach with deep learning 
taking over that task,” says Raymond 
H. Mak, MD, a thoracic radiation on-
cologist and associate professor of  

radiation oncology at Harvard Medical 
School, Brigham and Women’s Hospi-
tal, and Dana-Farber Cancer Institute 
in Boston.

Dr. Mak and Hugo Aerts, PhD, di-
rector of the Artificial Intelligence 
in Medicine (AIM) Program at Har-
vard-Brigham and Women’s Hospital, 
are helping to lead the development of 
DL and radiomic technologies applied 
to medical imaging data. Recognizing 
a need for a standardized extraction en-
gine in radiomics, AIM has developed 
pyradiomics, an open source platform 
for reproducible radiomic feature ex-
traction. Supported in part by a US 
National Cancer Institute grant, Pyra-
diomics is based on open source tools 
and platforms developed by big tech 
companies such as Google, Facebook 
and others.2 

Toward Intelligence and a 
Multimodality Approach

At Duke University, Kyle Lafata, 
PhD, a postdoctoral associate in radia-
tion oncology and the program director 
for AI Imaging, Woo Center for Big 
Data and Precision Medicine, is work-
ing toward developing and translating 

quantitative image analysis techniques 
and digital biomarkers into actionable 
intelligence that can be used in clinical 
practice, specifically radiation oncology.

Using radiomics, features and in-
formation in medical images are ex-
tracted, including morphology (the 
3-dimensional size and shape of the 
object), intensity distribution of the 
signal with an image, the texture or 
the relationship between voxels in an 
image, and the interaction of those 
voxels spatially. 

“Images are unstructured data,” Dr. 
Lafata explains, “so the process is to 
transcribe them into structured datasets 
that can be combined with other infor-
mation to use in diagnosis or prognosis.”

He adds that imaging data such as 
standard uptake value (SUVmax) are 
radiomic features; combining imaging 
and clinical data provides a more pow-
erful prognostic effect than using them 
individually. ML/DL helps correlate 
the data so it can be used in clinical 
practice.

“One domain knowledge isn’t 
enough—by combining integrative 
‘omics’ we can learn more complex 
information,” Dr. Lafata says. His 

The intersection of radiomics, 
artificial intelligence and  
radiation therapy
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group has been looking at pathomics, 
the concept of extracting the same or 
similar features from digital pathology 
slides as they are extracting with radio-
mics. “By extracting both radiomics 
and pathomics data, we can start to see 
the appearance and behavior of disease 
across different spatial and functional 
domains.”

For example, by taking the anatomic 
data from a computed tomography 
(CT) scan on a tumor mass with met-
abolic data on the F-18 fluorodeoxy-
glucose (FDG) uptake in a positron 
emission tomography scan and then 
combining that with features extracted 
from the pathology (the biopsy), Dr. 
Lafata can learn more about metabo-
lism of the tumor, the structure of the 
tumor and the microscopic disease.

“Now, we have 3 levels of informa-
tion that will tell us different things 
about that tumor,” he adds. “Depend-
ing on the machine learning model we 
intend to develop, we can use that data 
to make a diagnosis, guide treatment or 
determine therapeutic response.”

Dr. Lafata says a multimodality 
approach must extend beyond one 
discipline or domain, such as radiol-
ogy, pathology, genetics and health 
information, including the electronic 
medical record. By combining these 
disciplines, the clinician may uncover 
enough information to define the pa-
tient phenotype diagnostically and 
therapeutically. 

Standardization and Other Challenges
Data access and sharing are central 

to the collaborations among research-
ers and institutions. One way to expe-
dite this process while minimizing data 
privacy issues is through a distributed 
learning environment in which models 
move to different institutions rather 
than requiring data to be in a central 
location, says Mattea Welch, a PhD 
candidate at the University of Toronto, 
who has co-authored several articles 
on radiomics as part of her doctoral 
studies and thesis. She has collabo-
rated with Dr. Aerts and Ander Dek-
ker, PhD, professor of clinical data 
science, MAASTRO Clinic, Maas-
tricht University, The Netherlands. 

“We are generating mass amounts 
of imaging data in the clinic every 
day, and there is potential to leverage 
that data, but we need to better under-
stand what is driving the predictive and 
prognostic capabilities of the quan-
tified imaging features,” Dr. Welch 
says. “There is a need for standardized 
methods and collaboration across dis-
ciplines and institutes.”

The intersection of computer sci-
ence and medicine is not only an 
area of discovery, it is also where 
safeguards, standardization, and 
collaboration are needed to ensure re-
producibility. This need led Dr. Welch 
and co-authors to highlight the vul-
nerabilities in the radiomic signature 
development process and propose 

safeguards to refine methodologies to 
ensure the development of radiomic 
signatures using objective, indepen-
dent and informative features. These 
safeguards include using open source 
software, such as pyradiomics; testing 
models and features for prognostic and 
predictive accuracy against standard 
clinical features; testing feature mul-
ticollinearity using a training dataset 
during model development; testing 
underlying dependencies of features 
using statistical analysis or by perturb-
ing data; ensuring image quality by 
preprocessing data to avoid erroneous 
features such as metal artifacts; and in-
cluding manual contouring protocols 
to describe prevalent imaging signals 
used for delineation.3

“The main take-home message is 
that collaboration between researchers 
and clinicians is needed to ensure un-
derstanding of the nuances of clinical 
data and methods being used for radio-
mics,” Dr. Welch adds. 

Variations in systems, software 
and reconstruction algorithms across 
manufacturers and the impact on data 
reproducibility and prognostic capabil-
ities is an area of concern and active re-
search. One position, notes Dr. Welch, 
is that if extracted features are not sta-
ble across different systems and data 
perturbations, then perhaps they are 
not prognostic or predictive. 

It also comes down to imaging sys-
tems not being engineered for intended 

“By extracting both radiomics and pathomics data, we can 
start to see the appearance and behavior of disease across  
different spatial and functional domains.” 

Kyle Lafata, PhD  
Duke University 
Woo Center for Big Data and Precision Medicine
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radiomic applications. “Now, we are 
treating images as data. It’s a reverse 
engineering process. Since we are now 
using these systems in nontraditional 
ways, we need them to be more quan-
titatively sound. For example, if we 
want to use radiomics to differentiate a 
benign vs a malignant tumor, then we 
need to make sure the features capture 
the underlying phenotype of the dis-
ease, and not the underlying noise dis-
tribution of the imaging system.”

Additionally, different postprocessing 
techniques such as filter-back projection 
and iterative reconstruction in CT im-
aging can impact image quality and, 
therefore, the radiomic data. 

“A common problem in medicine 
is the issue of small sample sizes,” Dr. 
Lafata adds. “Even if we have a large 
data set, we need that feature data to 
match with the outcome to build a 
model. A problem across the board has 
been the ability to gather that robust in-
formation on each patient irrespective 
of having a large amount of input data 
for a machine learning algorithm.”

Even digital biomarkers are limited 
by source variation and unstable data, 
he says. A lot of work remains to har-
monize and unify data and knowledge 
across domains such as genomics and 
radiomics.

“We need to understand the intri-
cacies of the data and the learning 
algorithm,” Dr. Lafata says. “The un-
certainty of machine learning models 
is not as straightforward as conven-
tional statistical propagation of error. 
It comes down to the complex rela-
tionship between the data that is being 
measured and the response of a learn-
ing algorithm to that data.”

Human Factors and Potential
“Traditional radiomics require a 

human for analysis,” Dr. Mak says. To 
analyze a tumor, for example, the on-
cologist would manually segment it. 
This could present certain human biases 
into the data, based on the clinician’s 
use of libraries of features and their un-
derstanding of the tumor biology. When 
a DL model is trained, it can learn from 

the underlying data without the need for 
initial human interpretation.

“We think that with DL we can min-
imize human biases. However, the 
chief concern is whether that DL-de-
rived data is interpretable and what 
is that DL algorithm learning from?” 
says Dr. Mak. “Is that DL performing 
according to task?”

Yet, despite such concerns, Dr. Mak 
believes radiation oncology will con-
tinue the pursuit of applying DL-based 
tools to radiomics. DL and radiomics 
will have a role in 3 primary areas: 1) 
aiding diagnosis; 2) predicting treat-
ment response and patient outcome; 
and 3) augmenting humans in manual 
tasks, such as segmentation and radia-
tion therapy planning. 

The development of automated 
planning has already begun. Dr. Mak 
was lead author on a paper describing 
how a crowd innovation challenge was 
used to spur development of AI-based 
auto segmentation solutions for radi-
ation therapy planning that replicated 
the skills of a highly trained physician.4 

“The potential of this type of tech-
nology to save time and costs and also 
increase accuracy is significant, partic-
ularly for areas of the world where this 
type of skill and specialty may not be 
available or is understaffed,” says Dr. 
Aerts.

According to Dr. Lafata, their lab at 
Duke Radiation Oncology pioneered 
mathematical techniques to optimize 
treatment planning and help determine 
the best plan for improving dosimetric 
constraints. This early work inspired 
Varian (Palo Alto, California) to com-
mercialize the methodology as the 
RapidPlan knowledge-based treatment 
planning solution (Figure 1). 

“Solutions such as RapidPlan that 
have a human-machine interface are 
lower risk than one that doesn’t have 
the human element,” Dr. Lafata says.

Beyond what is commercially avail-
able, Drs. Aerts and Mak see potential 

FIGURE 1. RapidPlan by Varian combines machine learning, which generates the optimal 
baseline treatment plan, with user intelligence and expertise to control, personalize, and fine-
tune individual plans through multicriteria optimization.
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for radiomics and AI/DL to aid treat-
ment planning and the selection of the 
optimal plan as well as monitor patient 
response.

“Deep learning and radiomics will 
move beyond the traditional realm of 
predicting response and be applied to 
other aspects, such as identifying the 
patient’s biological phenotype and se-
rial assessment of tumor evolution in 
response to treatment,” Dr. Mak adds.

Dr. Welch notes that some research-
ers are also seeking to predict toxicity 
using the same pattern recognition tech-
niques as radiomics. “By quantifying 
the dose in different organs at risk using 
radiation therapy plans, we can predict 
toxicity or different outcomes such as 
loco-regional failure,” she says. 

Delta radiomics is another area of 
research in which changes in the fea-
tures are calculated using pre- and 
post-treatment images. Then, Dr. 
Welch explains, those delta-radiomic 
features can be tested to determine 
whether they correlate with different 
patient outcomes.

“From the image capture to the 
treatment planning to dose delivery, 
[artificial intelliegence (AI)] is revolu-
tionizing the field of radiation therapy. 
AI will impact outcome prediction and 
enable better monitoring response,” 
Dr. Aerts says.

However, he cautions that human 
validation should remain an important 
aspect of any AI or radiomics-based 
solution to ensure high quality. The 
pursuit of radiomics should involve 
using AI to achieve a good solution 
quickly and still be reviewed and ap-
proved by humans. 

Several organizations are building 
large plan libraries and aggregate DL-
based models on different data sets, 
Dr. Mak adds. However, the underly-
ing concern remains that the data may 
not be entirely reliable, and the quality 
may not be the same across different 
data sets. 

“Context is key for these radiomic 
and DL applications,” Dr. Mak says. 
“There can be interpretability prob-
lems or data quality issues. The key 

aspect for deep learning is to have a 
large and well-curated data set to train 
the model but also context-dependent 
expertise to develop and ensure the ap-
propriate clinical application.”

The bottom line, says Dr. Lafata, 
is that while radiomics and DL are on 
opposite ends of the spectrum—with 
radiomics being a hand-crafted human 
approach and DL being a computer-
ized approach—the two are comple-
mentary techniques that will enable the 
field of radiation therapy to interpret 
images and data beyond human capa-
bility and intuition.
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“From the image capture to the treatment planning to dose 
delivery, AI is revolutionizing the field of radiation therapy.  
AI will impact outcome prediction and enable better  
monitoring response.”

Hugo Aerts, PhD  
Harvard-Brigham and Women’s Hospital
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Use of an OP Care smartphone application to 
improve care of gynecology cancer patients 
in a low-resource setting

Tlotlo B. Ralefala, MD; Sonya Davey, MPhil; Natalie Bonner, BS; Barati Monare, BA;  
Givy Dhaliwal, BS; Surbhi Grover, MD, MPH

With 10 million new cancer diag-
noses expected annually by 2030, 
low- and middle-income countries 
(LMICs) are expected to see an in- 
crease of cancer incidence.1 Currently,  
> 60% of the global cancer burden and 
70% of cancer-related mortality occur 
in LMICs.2 In these regions, there is 
a need for access to early detection, 
affordable treatment, and integrated 
treatment monitoring. This case sum-
mary describes the use of a smartphone 
application to monitor treatment ini-
tiation and follow-up of patients with 
gynecologic cancers who presented 
to the multidisciplinary team clinic 
(MDT) at Princess Marina Hospital, 
Gaborone, Botswana.

CASE SUMMARY
Following the success of 2 digital 

health pilot studies in LMICs3,4 in Janu-
ary 2018, the clinic adopted OP Care, an 
outpatient smartphone application devel-
oped by ONE BCG Pty Ltd (Gaborone, 
Botswana, Africa). OP Care is able to: 1) 
store and share patient oncology records 
with restricted access to users, 2) elec-
tronically schedule appointments includ-
ing automatic reminders to patients and 
notifications of missed appointments to 
providers, and 3) display real-time clinic 
reports. OP Care provides a user-friendly 
interface that enables physicians, nurses, 
and students to enter information into 
an electronic form and add notes and 
attachments. The average time to enter 

patient data into the application is lower 
than previously used paper records. The 
application’s electronic link to Google 
Data Studio enables real-time deidenti-
fied reports of parameters including age, 
gender, HIV status, cancer type, cancer 
stage, treatment intent, treatment type, 
appointments completed, appointments 
missed, and short message services 
(SMS) sent. 

From January 2018 to March 2019, 
OP Care was used to enroll 751 patients, 
of whom 506 (67.4%) were enrolled 
from the gynecologic MDT clinic and 
245 (32.6%) were from the general 
oncology unit. Of all enrolled patients, 
401 (53.4%) were aged 40 to 60 years, 
647 (86.2%) were female, 376 (50.1%) 
were HIV-positive, and 437 (58.2%) 
were treated with curative intent ther-
apy. Addionally, 432 (71.6%) patients 
were diagnosed with cervical cancer, 
263 (35.0%) were stage II/III, and 61 
(10.1%) had an unknown stage.

In total, OP Care tracked 1103 com-
pleted appointments and 415 missed 
appointments. Missed appointments 
are stratified by appointment type: 102 
(24.6%) were follow-ups after treatment, 
159 (38.3%) were for treatment review, 
138 (33.3%) were generic appointments, 
and 3 (0.72%) were for offsite treatment. 

Dr. Ralefala is a clinical oncologist, Department of Oncology, Princess Marina Hos-
pital, Gaborone, Botswana. Ms. Davey is a medical student, Perelman School of Med-
icine, University of Pennsylvania, Philadelphia. Ms. Bonner is a medical student, UT 
Southwestern Medical School, Dallas, TX. Ms. Monare is an oncology research coor-
dinator, Botswana-UPenn Partnership, Gaborone, Botswana. Mr. Dhaliwal is CEO of 
ONE BCG, Gaborone, Botswana. Dr. Grover is an assistant professor, Perelman School 
of Medicine; radiation oncologist, Department of Radiation Oncology, University of 
Pennsylvania, head of oncology, Botswana-UPenn Partnership; and oncology consul-
tant, Princess Marina Hospital. Disclosure: ONE BCG (Gaborone, Botswana, Africa) 
provided funding and support for development and implementation of the smartphone 
application. None of the authors received outside funding for the production of this orig-
inal manuscript. The abstract, Usability and effectiveness of smartphone application for 
tracking oncology patients in Gaborone, Botswana, was presented at the Consortium of 
Universities for Global Health, March 8-10, 2019; Chicago, IL.



RADIATION ONCOLOGY CASE

applied radiation oncology

 www.appliedradiationoncology.com                        APPLIED RADIATION ONCOLOGY      n      39December  2019

Unfortunately, missed appointments 
were not recorded in the resister for use 
in evaluating the compliance rate prior to 
OP care. During the period, 2492 short 
message services (SMS) were sent to 
remind patients of their appointments, 
of which 2,370 (95.1%) were success-
fully received by the patient on a feature 
phone. Of the 751 cases, < 5 patients had 
no cell phone of any kind and had mes-
sages sent to their care provider (eg, son, 
daughter). 

We reviewed new patient booking 
data in the MDT clinic from 2017-2019 
to assess whether the patient attendance 
rate improved with implementation of 
OP Care. In 2017 (May to December), 
before implementation of OP Care, an 
average of 45% of the patients :(based 
on a total of 561 patients) booked for 
clinic actually came (prior to that, data 
was not available since the registers 
were not saved). In Feburary 2018, OP 
Care was initiated in the clinic, with 
very few patients (< 1%) declining 
consent to enroll. In 2018, the atten-
dance rate improved to 53%. The atten-
dance rate for 2019, with OP Care fully 
implemented, from January to June, 
was 61%. Thus, between 2017 to 2019 
(before and after OP Care initiation) 
there was a 33% increase in patients 

arriving to booked appointments, which 
was statistically significant using a t-test 
(p = 0.02) (Figure 1).

DISCUSSION
Through Botswana’s national insur-

ance system, citizens usually have access 
to all treatment modalities required 
based on cancer stage at full cost to the 
government. However, similar to other 
LMICs, oncology care in Botswana suf-
fers from a high patient burden accom-
panied by a lack of personnel and lack of 
robust referral and follow-up systems.5 

The gynecologic oncology MDT 
clinic integrates patient care into a 
single setting by assessing new and 
follow-up patients. All new patients 
are examined by oncology and gyne-
cology physicians, and departments 
agree on a patient treatment plan. The 
clinic facilitates early review of new 
cancer cases by all necessary depart-
ments in the hospital as well as private 
facilities with the intention to educate 
patients about their diagnosis and treat-
ment plan, decrease treatment delays 
as well as facilitate access to palliative 
care and social work interventions. 
Treatment and patient outcomes are 
reported during follow-up, which is 
crucial to identify disease recurrence/

progression and establish appropriate 
patient management. The objective of 
post-treatment follow-up is to educate 
patients on late treatment side effects 
and how to manage them, and refer the 
patients if necessary to other special-
ists for intervention.6,7 Since its con-
ception in May 2015, the MDT clinic 
has seen over 1000 patients. However, 
during this period, in addition to poor 
physician-to-patient ratios,8 challenges 
included incomplete hospital inventory 
of paper-based medical records,5,9 frag-
mented communication between physi-
cians and social work,5 and patient loss 
to follow-up.10 The barriers in struc-
tured communication resulted in no 
treatment initiation, delays in treatment, 
and/or inconsistent follow-up.5-10

A cross-sectional study surveying 
providers who used the application and 
patients enrolled via the application was 
conducted to assess the usability and 
effectiveness of OP Care.11 The study 
found that 78% of providers did not feel 
OP Care increased their work burden 
and they were willing to use the applica-
tion.11 In addition, based on 19 questions 
regarding usability, providers stated 
they were very comfortable using OP 
Care.11 Patients felt SMS reminders were 
very helpful, but preferred messages 
in Setswana instead of in English.11 
Further, attendance of scheduled new 
patient appointments has increased 
from 45% to 60% in just over a year 
since implementing OP Care and patient 
reminders. We will continue to follow 
OP Care data for new patients and follow 
up on patients over time as the OP Care 
application continues to be modified to 
further improve patient follow-up and 
retention rates. In the long term, we also 
plan to study reduction in patient delays 
and improvement in patient outcomes 
as a result of OP Care implementation. 
Thus far, we believe the integration of 
OP Care into the clinic has improved 
access to medical records, clinic sched-
ules, and patient follow-up, allowing the 
healthcare workers to focus on patient 

FIGURE 1. Compliance with new appointments since the implementation of the OP Care 
smartphone application. 

45
53

61

0

10

20

30

40

50

60

70

2017 2018 2019

Pe
rc
en

t	C
om

pl
ia
nt
	(%

)

New	Patient	Appointment	Compliance	
(%	Of	Booked	Patients	Who	Came	for	Their	

Appointment)



RADIATION ONCOLOGY CASE

applied radiation oncology

40      n      APPLIED RADIATION ONCOLOGY                     www.appliedradiationoncology.com December  2019

management and treatment counseling. 
The healthcare team can spend more 
time on patient care instead of worry-
ing about obtaining medical records and 
managing the schedule.11

Despite the SMS reminders, several 
appointments were missed. Although 
there are no data from the MDT clinic on 
reasons for missed appointments, a recent 
study in Botswana evaluated reasons for 
missed appointments. In a cohort of 488 
patients, 172 missed appointments due to 
work obligation, family duties, transpor-
tation fees, and forgetting the appoint-
ment date.12 While OP Care will not be 
able to improve missed appointments 
due to work and family obligations, we 
hypothesize that SMS reminders will 
decrease missed appointments from for-
gotten appointment dates. In addition, 
due to poor death registration, some 
patients lost to treatment may have died. 
OP Care will add questions for reason 
of missed appointments to help develop 
problem-specific interventions. 

CONCLUSION
The use of OP Care in a LMIC 

gynecology oncology clinic setting 

demonstrates the feasibility and effi-
cacy of user-friendly mobile technol-
ogy to improve patient record storage, 
treatment monitoring, appointment 
scheduling and tracking as well as 
patient compliance with booked 
appointments. In addition, real-time 
data output enables personnel of vary-
ing skill to assess clinic data, providing 
a simple method for clinics to identify 
gaps and measure quality improve-
ment. We plan to expand use of this 
application to other oncology clinics as 
well as other specialties. Future steps 
also include studying improvement 
in patient retention and outcomes as a 
result of an OP Care application.
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Complete response after treatment with 
pembrolizumab in a patient with metastatic 
cutaneous squamous cell carcinoma 
involving the cavernous sinus
Vamsi Varra, BS; Richard B. Ross, MD; Brian Gastman, MD; Claudia M. Diaz-Montero, PhD; 
Jessica Geiger, MD; Shlomo A. Koyfman, MD

CASE SUMMARY
An 84-year-old man with a history 

of numerous nonmelanomatous skin 
cancers of the face presented with 
blurry vision and diplopia, as well as 
numbness and foreign body sensation 
to the right face. MRI demonstrated 
an enhancing mass encompassing the 
lateral rectus muscle in the right orbit, 
extending dorsally until the anterior 
cavernous sinus (Figure 1A). This 
prompted a biopsy of the right orbital 
mass, which revealed poorly differ-
entiated squamous cell carcinoma, 
suggesting recurrence of a previously 
treated cutaneous squamous cell car-
cinoma (cSCC) of unknown location. 
The mass was confirmed on staging 
positron emission tomography/com-
puted tomography (PET/CT) with no 
evidence of nodal or distant metastatic 
involvement. The patient declined 
surgical intervention and instead was 
initiated on pembrolizumab, 200 mg 
every 3 weeks for 2 years, without 

any additional adjuvant chemotherapy 
or radiation therapy. For the patient’s 
convenience, pembrolizumab was cho-
sen over nivolumab, which is dosed 
twice a week. At the patient’s next 

follow-up visit, 2-and-a-half weeks 
after the first cycle, the patient noted 
improvement of his diplopia and com-
plete resolution of associated pain. An 
MRI obtained 4 months after initia-
tion of pembrolizumab demonstrated 
a near complete response of the mass. 
At the patient’s most recent follow-up, 
2 years after initiation of pembroli-
zumab therapy, the patient has main-
tained his near complete response on 
follow-up MRIs, with further reso-
lution of his visual symptoms (Fig-
ure 1B). Throughout treatment, the 
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FIGURE 1. MRIs demonstrating extent of tumor involvement before (1A) and after (1B) 
treatment with pembrolizumab in an 84-year-old man with cutaneous squamous cell carci-
noma involving the right orbit extending along the cone of the orbit into the cavernous sinus.
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patient experienced minimal toxicity, 
including hypothyroidism treated with 
replacement thyroid hormone.

IMAGING FINDINGS
Initial diagnostic MRI demonstrated 

an enhancing mass encompassing the 
right lateral rectus muscle extending 
posteriorly until the anterior cavernous 
sinus. A staging PET/CT scan demon-
strated an F-18 fluorodeoxyglucose 
(FDG)-avid soft-tissue mass of the 
right orbit consistent with the mass 
seen on MRI as well as 2 FDG-avid 
cutaneous nodules in the left cheek and 
left posterior ear respectively, but no 
evidence of nodal or distant metastatic 
disease. The 2 cutaneous nodules, 1 of 
which was proven on biopsy to be basal 
cell carcinoma, were no longer noted 
on examination after completion of 
pembrolizumab therapy. During treat-
ment with pembrolizumab, follow-up 
MRIs were obtained every 2 months 
for the first 6 months and then every 3 
months afterward. These demonstrated 
continued near complete response of 

the cancer beginning 4 months after 
starting therapy.

DIAGNOSIS
Recurrent cutaneous squamous cell 

carcinoma of the right orbit involving 
the anterior cavernous sinus

DISCUSSION
PD-1 is a cell surface protein 

that sends a signal to dampen T-cell 
responses when activated. In cancer 
cells, PD-1 is often turned on with the 
goal of suppressing immune responses. 
Thus, preventing these molecules from 
interacting with their binding part-
ners via antibody blockade can restore 
anti-tumor immune responses with 
significant clinical benefits.1 Pem-
brolizumab, a monoclonal antibody 
targeting PD-1, has been shown to be 
efficacious in treating melanoma, lung 
cancer, mucosal head and neck can-
cer, gastric cancer, urothelial cancer, 
and triple-negative breast cancer.1 In 
immunosuppressed populations, cSCC 
has a high mutational burden and has 

increased incidence. In other cancers, 
these attributes predict likely response 
to immunotherapy with a checkpoint 
inhibitor, prompting the investigation 
of PD1 inhibition as treatment for unre-
sectable, locally advanced or metastatic 
cSCC.2

This patient’s experience highlights 
the potential for PD-1 inhibition as 
definitive treatment of locally advanced 
or metastatic cutaneous squamous cell 
carcinoma, an entity typically treated 
with local resection and radiation ther-
apy with or without concurrent chemo-
therapy. Our patient’s clinical course 
is consistent with a previous case 
series that reported multiple complete 
and partial responses in patients with 
locally advanced or metastatic cSCC 
receiving anti-PD1 therapy.1 Of note, a 
phase II trial elucidated the efficacy of 
cemiplimab, another PD1 inhibitor, in 
unresectable, locally advanced and met-
astatic cSCC.2

In addition, analysis of the patient’s 
blood was performed, as part of an 
IRB-approved protocol, just prior to 

FIGURE 2. Peripheral blood cells were isolated at the indicated time point, and levels of immune cell types were determined by flow cytom-
etry analysis using the indicated markers. Levels are depicted as percentage of viable white cells. Significant changes in circulating levels 
were determined using the Student t test. Key: MDSC = myeloid-derived suppressor cells, M-MDSC = monocytic myeloid-derived suppres-
sor cells, PMN-MDSC = polymorphonuclear myeloid-derived suppressor cells.
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treatment with pembrolizumab, and at 1 
month and 10 months after initiation of 
treatment (Figure 2). A decrease in the 
levels of circulating myeloid-derived 
suppressor cells (MDSCs), particularly 
monocytic MDSCs was associated with 
response. The frequencies of circulating 
CD8+ T cells were slightly increased 
after treatment, whereas levels of circu-
lating CD4+ T cells were significantly 
lower at the second time point mea-
sured. Interestingly, a significant reduc-
tion in the levels of suppressive CD8+ 
T cells (CD8+ CD28- PD1+) and regu-
latory T cells were also associated with 
treatment response.

The immunologic findings in this 
case are consistent with recent stud-
ies identifying changes in peripheral 
blood lymphocytes during treatment 
with immunotherapy. In this case, 
we observed a decrease in the periph-
eral blood levels of cell types associ-
ated with immune suppression such 
as MDSCs, CD8+ CD28- PD-1+ T 
cells, and regulatory T cells. Stud-
ies have demonstrated associations 
between both decreased MDSC levels 
and decreased regulatory T cell levels, 

respectively, with response to immune 
checkpoint inhibition in patients with 
melanoma.3,4 Also, CD8+ CD28+ T 
cells were recently shown to be criti-
cal in anti-PD-1 therapy in lung can-
cer patients.5 Therefore, decreased 
CD8+ CD28- T cell populations after 
treatment, which were observed in 
our patient’s case, may be a marker of 
immunotherapy sensitivity in cSCC.

CONCLUSION
This report presents a case of a 

patient with recurrent, poorly differ-
entiated cutaneous squamous cell car-
cinoma metastatic to the right orbit, 
tracking posteriorly into the cavernous 
sinus, causing blurry vision and diplo-
pia. The patient declined surgical inter-
vention and instead was initiated on 
pembrolizumab immunotherapy. After 
completing his regimen, the patient had 
a complete response to therapy, with 
resolution of his visual symptoms and 
stable appearance of the mass on fol-
low-up MRIs.

Analysis of the patient’s blood 
was performed prior to treatment, as 
well as at 2 time points afterward, and 

showed a decrease in various immune 
suppressive cell lines, such as circulat-
ing myeloid-derived suppressor cells, 
CD8+ CD28- PD-1+ T cells, and reg-
ulatory T cells. These cell lines have 
been associated with response to anti 
PD-1 therapy in melanoma and lung 
cancer, and as demonstrated by this 
case report, may be useful markers in 
response to immunotherapy in cutane-
ous squamous cell carcinoma as well.
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CASE SUMMARY
Between 2013 and 2019, 298 

patients were treated with stereo-
tactic radiation therapy (SRT) and 
radiosurgery (SRS) techniques in our 
center. The dose fractionation sched-
ules ranged from 30 Gy in 5 fractions to 
30 Gy in 1 fraction. A mixture of cen-
trally and peripherally located lesions 
was seen among the treated patients. Of 
these patients, 2 reported alopecia over 
the beam locus. One patient had been 
treated for arteriovenous malformation 
(AVM) with a dose of 25 Gy, and the 
other had been treated for brain metas-
tasis with a dose of 22.5 Gy, both with 
single-fraction treatments. All plans 
were meticulously evaluated before 
treatment delivery. For the first patient, 
at the time of treatment planning, the 
scalp was not contoured and the scalp 
dose was not optimized, whereas for 
the second patient, drawing of the scalp 
and its optimization were carried out. 

On retrospective analysis of the treat-
ment plans, the scalp was contoured on 
the first patient and its mean dose was 
found to be 637 cGy (25.5%) of the pre-
scription dose; for the second patient, 
this was 593 cGy (26.4%).  

The manifestation of alopecia in a 
conventional 1.8 to 2 Gy per fraction 
treatment regimen is seen with a dose of 
at least 25 to 30 Gy.1,2 For single-fraction 
treatments, the typical dose is 5 to 8 Gy 
of biologically equivalent dose as per a 
conventional fractionation regimen.3-5 
Analysis of all SRS/SRT patients in our 
center shows a mean scalp dose of 429.0 
± 344 cGy. In our patient subset, we did 
not come across any incidence of alope-
cia in patients who received < 15 Gy in a 
single fraction. 

Our experience points to the in- 
creased risk of permanent or temporary 
alopecia in patients having peripherally 
located lesions when the delivered dose 
to the planning target volume (PTV) 

exceeds 20 Gy. We recommended 
delineation of the scalp and including it 
in dose optimization. 

METHOD 
We started our stereotactic program 

in 2013 and have presented results in 
multiple forums.6-12 All patients were 
treated by a frameless stereotactic tech-
nique (SRS or SRT) using volumet-
ric-modulated arc therapy (VMAT) on 
an Axesse (Elekta, Stockholm, Sweden) 
linear accelerator with a 4-mm multi-
leaf collimator. Typically, SRS patients 
were treated by VMAT using 2 arcs (1 
coplanar, 1 noncoplanar), and details of 
the planning strategy are presented in 
several studies.6-13 In this report, we pres-
ent the finding of 2 unusual cases of strip 
alopecia for cranial stereotaxy as shown 
in Figures 1 and 2. Further, to evalu-
ate the dose-effect relationship, a scalp 
organ at risk (OAR) was drawn. The 
scalp was drawn on the ipsilateral side 
in all the axial slices in which the lesion 
was visible. Furthermore, the scalp was 
extended manually 3 cm in anterior, 
posterior, cranial and caudal directions. 
(This was checked by placing a dummy 
lateral beam ipsilaterally and seeing the 
projection of the PTV and the scalp in 
a digitally reconstructed radiography 
[DRR] mode). We considered only the 
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ipsilateral and partial scalp falling in the 
beam locus for optimization and dose 
evaluation.

Figure 3 presents the scalp as con-
toured in our clinic. No contouring 
guidelines are available for contouring 
the scalp. For the purpose of this study, 
the scalp was drawn as tissue between 

the outermost visible soft tissue (on the 
outside) and the bone/soft tissue inter-
face on the inner side. 

IMAGING FINDINGS
Figures 1 and 2 show an alope-

cia strip following SRS of the patients 
along with the dose-volume parame-

ters of the radiation therapy plan. Both 
patients reported with strip alopecia 
after 2 months of their radiation ther-
apy treatment. Two-year follow-up for 
case 1 revealed temporary alopecia with 
partial hair recovery. Initial evaluation 
of case 2 indicated permanent alopecia; 
follow-up data was not available as we 
lost contact with this patient.     

Case 1 (Figure 1) was a 33-year-
old man with AVM of the right parie-
to-occipital region. Digital-subtraction 
angiography showed a right 2.92 cm 
occipital nidus with extensive angioma-
tous changes. The patient received SRS 
treatment of 25 Gy in a single fraction. 

Case 2 (Figure 2) was a 42-year-old 
woman with squamous cell carcinoma 
of the left lung. She received concur-
rent chemoradiation therapy followed 
by adjuvant chemotherapy. She devel-
oped solitary brain metastasis after a 
disease-free interval of 4 months, and 
treatment plans were made for a dose of 
22.5 Gy in 1 fraction by SRS.

DIAGNOSIS
Case 1: AVM
Case 2:  Brain metastasis

FIGURE 3.  Scalp is drawn as t issue 
between the body periphery and skull bone. 
First the “scalp” was drawn encompassing 
the body contour. Body contours are usually 
the thermoplastic mask. Further scalp was 
withdrawn from the body by 2 mm, bringing 
the scalp to within the body surface.

A B

FIGURE 1. Post-radiation therapy alopecia status for patient 1, who has arteriovenous mal-
formation (AVM) of the right parieto-occipital region. He received 25 Gy in 1 fraction.

FIGURE 2. Patient 2, who has a solitary brain metastasis from squamous cell carcinoma of 
the left lung, received 22.5 Gy in 1 fraction. Hair concentration before radiation therapy (A), 
alopecia status after radiation therapy (B). Radiation therapy planning and dose volume his-
togram (C). Blue indicates a 20% (4.5 Gy) isodose line.
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C



RADIATION ONCOLOGY CASE

applied radiation oncology

 www.appliedradiationoncology.com                        APPLIED RADIATION ONCOLOGY      n      47December  2019

DISCUSSION
  Over the years, SRS and SRT have 

become common practice in managing 
various benign and malignant brain con-
ditions. The typical therapeutic doses are 
12 to 30 Gy in 1 to 5 fractions. It is well-
known that radiation therapy to the brain 
can lead to partial or total alopecia.3 Sev-
eral investigators have tried to prevent 
this by various techniques, with mixed 
results.4,5 

As with all patients, the treatment 
plans involved stringent physics qual-
ity assurance testing before treatment 
to ensure dose accuracy. Both patients 
had a single lesion located peripherally 
(close to the skull) and were treated 
with a single fraction (Table 1). In both 
cases, extensive alopecia was observed 

with complete loss of hair in the skull 
area corresponding to the paths of the 
treatment arcs. Our records of the 298 
patients showed that alopecia was not 
observed in patients who had a centrally 
located lesion (eg, secretory pituitary 
adenoma cases treated with a single 
dose of 25 to 30 Gy). Similarly, when 
the prescription dose was < 15 Gy in 
a single fraction in both centrally and 
peripherally located lesions, the inci-
dence of alopecia was not observed. 
The technique of determining a central 
vs peripheral tumor has been described 
in our early studies.6 The analysis of 
dose and fractionation regimen as a 
function of dose/fraction ≥ 15 Gy and 
dose/fraction < 15 Gy is presented in 
Table 2. The total number of patients 

was 298, with 41 patients receiving a 
dose/fraction ≥ 15 Gy and 257 receiv-
ing a dose/fraction < 15 Gy. The aver-
age cumulative scalp dose for ≥ 15 Gy/
fraction and < 15 Gy/fraction regimens 
is 335.5 ± 179.3 cGy and 484.4 ± 406 
cGy, respectively, whereas the average 
scalp dose (cGy)/fraction remains the 
same for the former group and reduces 
to 188.5 ± 196.3 cGy in the latter group. 
Drawing of the scalp and dose optimi-
zation were performed for 35 out of 41 
patients in the dose/fraction ≥ 15 Gy 
group, and 200 out of 257 patients in the 
dose/ fraction < 15 Gy group. The scalp 
was not drawn if the patient was already 
bald. About half of the patients were 
from different countries and we lost 
follow-up with a few of them. Inland 

Table 1.  Patient and Dose Characteristics

 Case 1 Case 2

Diagnosis AVM right parieto-occipital region Carcinoma left lung with solitary brain metastasis

Age 33 years 42 years

Sex Male Female

PTV volume 4.352 cc 14.496 cc

Arc start angle/arc length 190°/200°, 180°/40°, 190°/200° 20°/150°, 180°/40°, 180°/160°

Arc start stop resultant angle 380°, 360°, 380° 180°, 220°, 180°

Number of arcs used 2 coplanar partial, 1 noncoplanar 2 coplanar, 1 noncoplanar

Coplanar beams (Yes/No) Yes Yes

Prescription dose (PTV)/fraction 25 Gy/1 fraction 22.5 Gy/1 fraction

PTV dose maximum 2751.4 cGy 2792.9 cGy

Mean scalp dose 637 cGy (25.5%)  593 cGy (26.4%) 

Smallest distance between facing 2 cm 1.8 cm 
edges of PTV and scalp
Key: PTV = planning target volume, AVM = arteriovenous malformation

Table 2. Analysis of Dose and Fractionation Regimen

Dose/Fraction Average Prescription Average Number Average Dose Cumulative Scalp Average Scalp 
 Dose (cGy) of fractions (cGy)/Fraction Mean Dose (cGy) Dose (cGy) / 
     Fraction
≥ 15 Gy  2053.7 ± 385.9 1 ± 0 2053.7 ± 385.9 335.5 ± 179.3 335.5 ± 179.3
< 15 Gy  1754.3 ± 697.7 2.5 ± 1.8 918.5 ± 348.2 484.4 ± 406 188.5 ± 196.3
The table shows the average cumulative scalp dose and average scalp dose/fraction for 298 patients, with 41 receiving a dose/fraction ≥ 15 Gy and 257 
receiving a dose/fraction < 15 Gy.
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patients who received regular follow-up 
did not present with extensive strip alo-
pecia other than these 2 cases.  

After observing alopecia and its pat-
terns, we contoured the partial scalp 
through which the beam entered with 
appropriate margins to determine 
whether any dose-effect relationship 
existed. The treatment planning data 
revealed that contoured strips of skull in 
the alopecia zone received a mean dose 
of 20 % of the prescription dose or less. 
The method section describes the tech-
nique of scalp drawing and its dose opti-
mization. We drew a partial scalp since 
drawing a full scalp seems relatively 
infective in reducing dose to the relevant 
scalp area. The corresponding average 
absolute dose to the scalp was approxi-
mately 4 to 6 Gy for both patients. It is 
possible that actual surface doses were 
slightly different than doses estimated 
by the treatment planning system (TPS), 
but they are unlikely to be significantly 
higher. We did not perform in vivo 
dosimetry in our patients to confirm the 
TPS-estimated doses.

The phenomenon of alopecia 
observed in our cases is intriguing and 
surprising. VMAT arc-based treatment 
is an efficient technique of delivering 
treatment in a short span, causing the 
least patient discomfort. We used 2 non-
coplanar arcs with large arc lengths, 
mainly aimed at increasing conformity 
and decreasing scalp dose. Despite these 
efforts, alopecia occurred. Our expe-
rience shows that one must be careful 
while treating peripherally located brain 

lesions with an SRS dose exceeding 20 
Gy using a double-arc VMAT technique 
since there is an increased likelihood 
of hair loss even with the most meticu-
lous planning and dose constraints to the 
scalp. The resultant alopecia is not patchy 
but continuous in nature and follows the 
VMAT arc pattern. A possible sugges-
tion to avoid this strip alopecia is to use 
multiple smaller fields or to use a full arc 
(360 degrees) at the time of treatment 
planning. However, a standard solution 
for avoiding alopecia is not yet available. 

CONCLUSION
We present two atypical cases 

of alopecia in patients treated with 
VMAT-based, single-fraction SRS 
for peripherally located tumors. All 
precautions should be taken to avoid 
alopecia for hypofractionated treat-
ment—especially cranial stereotaxy—to 
avoid cosmetic disfigurement. Further 
study is required to establish the causal 
relationship between alopecia and dose/
delivery technique. 
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