
Combination of External Beam Radiation
Therapy and Immune Checkpoint Inhibitors in
Cancer Treatment: Mechanisms, Limitations,
and Clinical Applications
Anusha Muralidhar, PhD;1† Malick Bio Idrissou, PhD;2† Quaovi H. Sodji, MD, PhD3,4,5*

Abstract
External beam radiation therapy (EBRT) has long been integral in cancer treatment, effectively targeting localized
and metastatic tumors. Immunotherapy, especially immune checkpoint inhibitors (ICIs), leverages the immune
system to eliminate cancer cells but faces challenges such as treatment resistance. EBRT may provide an
approach to overcoming resistance to ICI therapy, thus enhancing ICIs’ efficacy and broadening their clinical
scope. EBRT, by inducing immunogenic cell death, primes the immune system and can potentiate ICIs. This
combination strategy has shown promise in preclinical studies, highlighting the potential of EBRT to overcome the
limitations of ICI monotherapy and vice versa. Clinical trials have demonstrated the safety and feasibility of this
combination, with evidence suggesting improved tumor control and patient outcomes. Nevertheless, numerous
challenges remain. This review explores the mechanisms, challenges, and clinical trials evaluating the
combination of EBRT and ICIs, underscoring the need for optimized approaches to maximize clinical efficacy,
while minimizing toxicities.
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Introduction
Radiation therapy (RT) is a pillar

in cancer therapy, predominantly
delivered in the clinical setting by

linear accelerators as external beam
radiation therapy (EBRT) to eradicate
cancer cells or provide symptom
relief.1 By inducing DNA damage in
cancer cells, RT disrupts their ability

to divide and proliferate, ultimately
leading to cell death.2 Over the
years, RT has evolved significantly
with advances in both technology
and methodology, enhancing its
precision while minimizing damage
to surrounding healthy tissues.3

The integration of advanced
imaging and computer technologies
has profoundly transformed RT
planning and delivery, significantly
enhancing treatment safety and
patient outcomes.4

Intensity-modulated radiation
therapy, image-guided radiation
therapy, and stereotactic body
radiation therapy (SBRT) represent
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major technological advances
that have made EBRT an
effective and indispensable tool in
modern oncology.5,6

Exploring the role of RT in
enhancing the effectiveness of
immune checkpoint blockade (ICB)
therapy has gained attention as
a promising strategy in advancing
cancer treatment. In recent
years, immunotherapy has gained
considerable clinical attention, with
ICB emerging as a transformative
strategy in cancer therapy.7 ICB
therapy with immune checkpoint
inhibitors (ICIs) targets immune
checkpoints, such as CTLA-4 and
PD-1/PD-L1, which tumors exploit
to suppress T-cell activity.8,9 By
suppressing the inhibition signal
from these immune checkpoints,
ICB boosts the immune system,
leading to durable tumor regression
and improved survival outcomes
in cancers, including melanoma,
non-small cell lung cancer, and renal
cell carcinoma.10

Resistance to ICB Therapy
Patients receiving ICIs as

monotherapy can develop primary
resistance, and thus never
respond to ICIs, or acquire
resistance and subsequently
develop disease progression after
an initial response. While
there are numerous mechanisms
underlying the resistance to ICB,
they are broadly dichotomized
into tumor-intrinsic or tumor-
extrinsic factors. Tumor-intrinsic
mechanisms include the loss
of neoantigens, especially in
low-tumor mutational burden
disease, aberrations in cell
signaling and metabolic pathways,
loss of major histocompatibility
complex (MHC) I expression
resulting in decreased antigen
presentation, and epigenetic
gene silencing through DNA
demethylation and histone

deacetylation. Tumor-extrinsic
mechanisms encompass factors
such as a decrease in
immune cell infiltration  in
the tumor microenvironment
(TME), compensatory upregulation
of other immune checkpoint
molecules, epithelial-mesenchymal
transition, and aberration in
angiogenesis. For further reading,
Alsaafeen et al provide a
comprehensive discussion of the
mechanisms of resistance to ICB.11

Radiation to Enhance the
Efficacy of ICB

Aside from directly eliminating
cancer cells, EBRT also possesses
immunomodulatory effects. A
key mechanism of such
immunomodulation is the activation
of type I interferon (IFN1)
response through the cyclic
GMP-AMP (cGAMP) synthase and
stimulator of interferon genes
(cGAS-STING) pathway.12-15 This
results in the production of IFNβ,
which promotes the activation
of dendritic cells and tumor
antigen-presenting cells, leading
to T-cell activation and an
antitumor immune response.15,16 In
preclinical models, EBRT-induced
IFN1 responses have been shown
to convert immunologically “cold”
tumors, lacking immune cell
infiltration into the TME, into
immunologically “hot” tumors.17,18

This shift subsequently boosts the
immune response that can be
further potentiated by cytokines
secreted by irradiated tumor
cells.15,19 Additionally, post-RT
immune modulation activates CD8+
T cells, increasing the number
of stem-like CD8+ T cells, which
become terminally differentiated
effector cells responsible for tumor
destruction. Tumor-draining lymph
nodes (LNs) serve as reservoirs
for these stem-like CD8+ T
cells, facilitating their expansion

and migration to the tumor.
Interestingly, targeting both the
LN and tumor with RT reduces
the abscopal effect and decreases
the number of tumor-specific and
stem-like CD8+ T cells, highlighting
the important role of LNs in
mediating the abscopal response.20

RT also induces the release
of exosomes from tumor cells
capable of stimulating dendritic cell
maturation and promoting natural
killer (NK) cell infiltration into
the TME. This immune activation
significantly delays tumor growth,
with NK cells producing IFNγ as
a key mediator of such antitumor
response. The subsequent depletion
of NK cells abolishes this
effect, underscoring their pivotal
role in the immune response.21

As such, the aforementioned
immunostimulatory effects of EBRT
can be exploited to enhance
suboptimal clinical efficacy of ICIs.

Combining EBRT With ICIs in
Cancer Treatment: Rationale
and Preclinical Data

The combination of EBRT
and ICIs represents a promising
frontier in cancer treatment, with
the capacity to enhance patient
outcomes through synergistic
mechanisms. This dual approach
leverages radiation’s ability to
enhance tumor immunogenicity by
triggering the release of tumor
antigens and damage-associated
molecular patterns, such as
calreticulin and high mobility
group box 1 (HMGB1).22 These
effects can create an “in
situ vaccine,” effectively priming
immune cells to recognize
and attack the tumor, thereby
enhancing the overall immune
response.23 EBRT also increases
the expression of tumor-associated
antigens and MHC molecules,
further making tumors more
susceptible to immune recognition
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and eradication.24 Radiation also
induces the expression by the
tumor of neoantigens, stimulating
the expansion of CD8+ T
cells, potentially contributing
to an abscopal response.25

This combination approach has
also been found to increase
the infiltration of cytotoxic T
lymphocytes into the TME and
the release of proinflammatory
cytokines, potentiating the immune
response.26-29 Figure 1 summarizes
the potential synergistic interactions
between radiation delivered by
EBRT and ICIs.

Several preclinical studies have
explored the potential of combining
EBRT with ICIs. Verbrugge et
al demonstrated that concurrent
radiation and PD-1 blockade
enhanced the curative effects of
radiation in a murine breast cancer
model.30 Sharabi and colleagues
showed that SBRT, given 1 day prior
to PD-1 blockade, enhanced the
antitumor immune response and led
to the formation of memory T cells
through cross-presentation of tumor
antigens.31 Furthermore, Friedman
et al showed that response to SBRT
can be augmented by concurrent
treatment with anti-PD-1.32

Despite the promising results of
combining RT with ICB, determining
the optimal approach for this
combination remains an area of
active research. Key factors such
as radiation dose, fractionation
schemes, and treatment sequencing
continue to be explored to maximize
the therapeutic benefits.33

Clinical Trials Investigating the
Combination of EBRT and ICIs

Combining EBRT with ICIs has
emerged as a promising approach
to enhance antitumor immune
responses and improve patient
outcomes across multiple cancer
types as shown in Table 1. Herein,

we focus our discussion mostly on
phase III trials.

Non-Small Cell Lung Cancer
(NSCLC)

The PACIFIC trial remains the
cornerstone study for combining
immunotherapy with EBRT in
NSCLC.48 This phase III trial
showed that compared with
placebo, durvalumab, administered
sequentially 1 to 42 days
after chemoradiotherapy (CRT)
significantly improved progression-
free survival (PFS) (median: 16.9
vs 5.6 mo) and overall survival
(OS) (median: 47.5 vs 29.1 mo) in
patients with unresectable stage III
NSCLC.34 Thus, it cemented the role
of durvalumab in the management of
unresectable stage III NSCLC.

Considering the success of the
PACIFIC trial, the PACIFIC 2 phase
III trial evaluated the concurrent
administration of durvalumab vs
placebo with CRT followed by
consolidation with durvalumab
or placebo in patients with
unresectable stage III NSCLC.49

Unfortunately, no statistically
significant improvement in the PFS
(HR, .85; 95% CI: .65-1.12; P =
.247) or OS (HR, 1.03; 95% CI:
.78-1.39; P = .823) was noted.35

The observed difference between
the outcomes of the PACIFIC and
PACIFIC 2 trials highlights the
crucial role of the sequencing of the
combination and suggests that with
standard fractionation, sequential
combination of durvalumab with
CRT in patients with unresectable
stage III NSCLC may be superior to
a concurrent administration.

With respect to ablative radiation
dose regimen, in the metastatic
setting the PEMBRO-RT phase II
trial reported a doubling of the
objective response rate (ORR) with
pembrolizumab administered after
SBRT (24 Gy in 3 fractions),
36% compared with 18% with
pembrolizumab alone. Although

trends toward improvement of the
median PFS (6.6 vs 1.6 mo) and
median OS (15.9 vs 7.6 mo) were
noted with pembrolizumab plus
SBRT, these were not statistically
significant due to the small sample
size of the study cohort.36 In
early stage disease, a randomized
phase II trial (I-SABR) by Chang
et al demonstrated a significant
improvement of the 4-year event-
free survival with the combination
of stereotactic-ablative radiation
therapy (SABR) and 4 cycles of
nivolumab (77%) compared with
SABR alone (53%).37

Small Cell Lung Cancer (SCLC)

The STIMULI phase II
trial evaluated the consolidation
immunotherapy with ipilimumab
and nivolumab compared with
observation after CRT in limited-
stage (LS) SCLC. No improvement
in the PFS was noted, and high
toxicity rates dampened the efficacy
of this therapeutic combination.38

The ADRIATIC phase III trial
randomized patients with LS SCLC to
receive after CRT durvalumab alone,
durvalumab plus tremelimumab, or
placebo. Interim results revealed
that adjuvant durvalumab led to
a significant improvement of OS
compared with placebo (median OS:
55.9 mo, 95% CI: 37.3-not reached;
vs 33.4 mo, 95% CI: 25.5-39.9;
HR: .73, 98% CI: .54-.98; P = .01).
Although the rates of grade 3 or 4
toxicities were similar in patients
receiving durvalumab or placebo,
24.4% and 24.2%, respectively,
treatment stoppage was higher in the
durvalumab arm (16.4%) compared
with the placebo group (10.6%).39

Head and Neck Squamous Cell
Carcinoma (HNSCC)

Multiple  phase  III  trials  have
evaluated  the  effects  of  various
combination  sequences  of  ICIs
with  EBRT  on  locally  advanced
(LA)  HNSCC.  JAVELIN  Head  &
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Neck  100  evaluated  avelumab  in
combination  with  CRT  (70  Gy/35
fractions  with  high-dose  cisplatin)
in  LA-HNSCC  compared  with  CRT
alone.  Patients  in  the  experimental
group  were  administered  a  loading
dose  of  avelumab,  followed  by
a  concurrent  administration  with
CRT  and  a  maintenance  dose.  No
difference  in  PFS  and  OS  was
noted  between  CRT  alone  and  CRT
in  combination  with  avelumab.40

The IMvoke010 trial evaluated
adjuvant atezolizumab vs placebo
in patients with LA-HNSCC who
underwent multimodal definitive
treatment, including surgery or
CRT. Interim analysis revealed no
improvement in event-free survival
and OS with adjuvant atezolizumab.41

Nevertheless, we are still awaiting
the results of the ECOG ACRIN

EA3161, which is evaluating adjuvant
nivolumab after CRT in patients
with LA intermediate-risk HPV-
positive oropharyngeal carcinoma.42

In the metastatic setting, McBride
et al evaluated during a phase
II randomized trial the ORR of
nivolumab plus SBRT (27 Gy in
3 fractions) compared with SBRT
alone. The addition of nivolumab to
SBRT did not improve the ORR or led
to an abscopal effect.50 For a more
comprehensive review of clinical
trials investigating the combination
of ICIs with EBRT, the readers are
referred to existing publication.51

Esophageal Cancers

The phase II/III trial ECOG-ACRIN
Cancer Research Group (EA2174) is
currently evaluating perioperative
nivolumab and ipilimumab in

patients with locoregional esophageal
and gastroesophageal junction
adenocarcinoma. Surgical candidates
are administered CRT with or without
nivolumab. Following surgical
resection, disease-free patients
receive nivolumab alone or in
combination with ipilimumab.43

KEYNOTE-975 is a phase II
trial evaluating the safety and
efficacy of pembrolizumab in
combination with definitive CRT
in patients with unresectable
esophageal carcinoma.44 The results
from these trials will shed light
on the potential role of ICIs in
the management of resectable and
unresectable esophageal cancers.

Genitourinary Cancers

In prostate cancer, a phase
III trial by Kwon et al assessed

Figure 1. Synergistic effects between radiation therapy (RT) and immunotherapy (IT) in improving tumor control. Red arrows highlight
the mechanisms by which RT enhances the immune response facilitated by IT, while green arrows depict how IT strengthens the
therapeutic outcomes of RT.
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ipilimumab following palliative
radiation of 8 Gy in one fraction to a
bone metastasis in patients with
metastatic castration-resistant
prostate cancer. While the OS benefit
was not statistically significant,
subgroup analyses highlighted a
survival advantage in patients with
favorable prognostic factors such as
the absence of visceral metastases,
normal to slight elevation in alkaline
phosphatase and without anemia.45

This study emphasized the
importance of patient selection. For
muscle-invasive bladder cancer, the
phase III trial KEYNOTE-992 is
currently ongoing and randomizes
patients seeking bladder
preservation to concurrent and
adjuvant pembrolizumab plus CRT vs
placebo plus CRT.46

Cervical Cancer

ENGOT-cx11/GOG-3047/KEYNOTE-
A18  is  a  phase  III  trial  that
evaluated  concurrent  and  adjuvant
pembrolizumab  plus  CRT  vs
placebo  plus  CRT  in  patients
with  high-risk  LA  cervical  cancer.
After  a  median  follow-up  of
17.9  months,  the  addition  of
pembrolizumab  to  CRT  yielded  a
significant  PFS  improvement.47

Other Cancers

In a phase II trial, a single
fraction of 8 Gy in combination
with pembrolizumab showed early
response in relapsed multiple
myeloma, with 32% of patients
experiencing clinical benefit at
3 months. An abscopal response
was reported in 20% of all
patients, including 3 out of the
7 patients previously treated with
CAR T-cell therapy.52 Multiple
phase III trials have evaluated
the combination of CRT with
temozolomide plus nivolumab
in glioblastoma with methylated

or unmethylated methylguanine-
DNA methyltransferase. However,
no improvement in survival
was observed.53,54

Limitations and Challenges of
Combination Therapy

Combining EBRT with ICIs
presents substantial therapeutic
potential but also creates significant
limitations and challenges.
One major hurdle is the
immunosuppressive effects of RT.
These effects include the activation
of regulatory T cells, recruitment
of tumor-associated macrophages,
and release of immunosuppressive
cytokines such as TGF-ß, which
collectively reduce the infiltration
and activity of cytotoxic T
cells within the TME.55 These
mechanisms can undermine the
clinical efficacy of ICIs. Determining
optimal dosing and sequencing
strategies is another significant
challenge. High radiation doses can
potentially be immunosuppressive,
while suboptimal doses may fail
to induce sufficient tumor cell
death or antigen release necessary
to prime the immune system.56

The timing of radiation relative
to ICIs is also critical. While
administering ICIs after radiation
can leverage radiation-induced
immune activation, the concurrent
administration may abrogate the
immune system activation and
increase the risk of systemic
toxicities, including overlapping
immune-related adverse events.57

Emerging data also suggest that
elective nodal irradiation targeting
tumor-draining LNs may interfere
with the potential synergism that
may ensue from the combination of
EBRT with ICIs.58,59 Thus, lymphatic
sparing radiation may be an effective
strategy to enhance the synergism
between EBRT and ICIs.

Conclusion
The combination of EBRT

and immunotherapy has shown
considerable potential in improving
treatment outcomes across various
cancer types. This approach results
in enhanced clinical outcomes,
including prolonged OS and
PFS. However, various challenges
persist. Optimizing the radiation
dose, field,  combination sequence,
and timing will be critical
for maximizing the potential
of EBRT and ICI combinations.
Nevertheless, results from current
phase III trials are likely to
clarify the synergistic relationship
between EBRT and ICIs.
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