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Building upon the physical
and radiobiological advantages of
high linear energy transfer (LET)
discussed in “Eradicating Cancer
Stem Cells Using High Linear
Energy Transfer Radiation Ther-
apy Part 1: Physics and Radiobi-
ology, ” this article examines the
clinical translation of heavy particle
therapy (HPT), especially via LET
painting, to overcome cancer stem
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cell (CSC)-related resistance. It
explores how multi-ion strategies,
spatial fractionation, and biologically
guided planning enable targeted
dose intensification to resistant
subregions while sparing normal
tissues. In doing so, it addresses
not only technical implementa-
tion but also economic, logisti-

cal, and immunological challenges
and opportunities.

Clinical Implementation of HPT

LET Painting for Treatment
Planning Adaptive to Tumor
Heterogeneity

The peak-to-plateau ratios of HPT,
based on changes in LET over
the course of the beam path,
enable “LET painting” or “kill
painting”--that is, the conformal and
selective escalation of LET to a
defined subvolume within a larger
target volume that is otherwise
treated with lower LET."* LET
painting was developed initially to
overcome the radioresistance of
hypoxic tumor subregions using
functional tracers such as "*F-FMISO
for guidance.® More recently, ionic
copper-based hypoxia tracers such as
%Cu-ATSM and *Cu-NOTA have been
well-validated in cell and animal
experiments. Though still early in
their clinical development, these
agents may allow for a more direct
means of CSC targeting, not merely
via hypoxia surrogacy, but through
biological affinity for stemness
markers such as CD133.”" This
shift suggests the potential for LET
painting to transition from targeting
microenvironmental resistance (i.e.,
hypoxia) to directly mapping and
ablating CSC populations.

Conjugation of “CuNOTA to
antibodiestargetingthe AC133
epitope of CD133hasenabled
high-contrast detection of CD133-
expressing gliomasin murine
xenografts usingboth PET
and near-infrared fluorescence
molecular tomography." Direct
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detection of CSCs using
superparamagneticiron oxide
nanoparticles conjugated to
appropriate homing moieties to
CSCbiomarkerssuchas AC133,
AC141,CD44v6,and CD109isunder
preclinical investigation by the
presentauthors. Thisapproach may
allow for CSC delineation at the spatial
resolution conditions of MRI."

If successfully translated to the
clinic, such functional imaging could
support the identification of both
high-biological risk tumor volumes
(HRTVs) for targeted LET escalation,
while defining low-biological risk
tumor volumes (LRTV = GTV -
HRTVs) for standard or de-escalated
treatment. The most precise and
conformal LET painting strategies
may ultimately rely on treatment
plans incorporating combinations
of different ionic beams.'" The
addition of multiple ion species to a
plan augments LET ranges for given
doses, volume sizes and shapes, and
desired gradients.

The potential for de-escalated
therapy to LRTVs is no less important
than escalated therapy to HRTVs
in establishing HPT as a clinically
viable strategy for improving
outcomes in resistant cancers. Just as
HPT is uniquely capable of sterilizing
the most resistant malignant cells,
its radiobiological potency creates
peril for even those normal tissues
capable of resisting injury by high
doses of conventional radiation
therapy (RT). Moreover, normal
tissue injury as a result of HPT is
more likely to be irreparable than
that caused by conventional therapy.

A cautionary precedent can be
found in a clinical trial in neon
ion radiation therapy (NIRT) for
glioblastoma (GBM) conducted at
the Lawrence Berkeley Laboratory
(LBL). Although the trial was
terminated prematurely due to the
facility’s closure, early outcomes
included tumor control and survival
nominally comparable or superior
to that seen in the modern

treatment of GBM. However, these
were accompanied by high grade
late toxicities including potential
treatment-related grade 5 toxicity in
patients whose tumors had been
controlled.” LET painting is thus an
essential treatment planning strategy
for safe clinical implementation of
HPT with significantly augmented
therapeutic ratio vs that of
conventional RT.

Apart from protons and carbon
ions already established in clinical
use, research has been done on other
species, including helium, lithium,
oxygen, and neon ions.'*"*" Clinical
helium ion therapy has commenced
at the Heidelberg Ion Therapy
Center (HIT, Germany), with
clinical oxygen ion therapy under
development.” Mayo Clinic Florida
likewise plans to attain capacity
for combination heavy ion therapy.
Unlike other oncologic therapies,
HPT offers modularity in dose
distribution and potency, facilitating
the individualization of therapeutic
prescription, including at the level of
intra-tumor heterogeneity.”* Even
before the clinical availability of
multi-ionic radiation therapy (MIRT),
the intensity-modulated composite
particle therapy (IMPACT) and
spot-scanning hadron arc (SHArc)
models at the National Institute of
Radiological Sciences (NIRS, Japan)
and HIT, respectively, have been
validated in Monte Carlo simulation
for multi-ion treatment planning
using LET painting and direct
LET-based optimization extended
to cover treatment with any
combination of protons, helium ions,
carbon ions, oxygen ions, and neon
ions (Figure 1).***! The greater the
variety of LET spectra from different
ions for treatment, the steeper the
achievable LET gradients, the less
the LET delivered to one voxel forces
the LET range deliverable to adjacent
voxels. Improved conformality of
LET distributions to irregularly
shaped targets such as those
delineated by functional imaging
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enables painting of LET gradients
onto planning imaging at will.>*'%*%
Preclinical and clinical studies of
MIRT are summarized in Table 1.

HPT Planning: Spatial
Fractionation to Maximize CSC Kill
and Minimize Toxicity

LET painting with MIRT has
particularly favorable properties for
targeting CSCsin pancreatic ductal
adenocarcinoma (PDAC) and GBM. In
GBM, radiation volumes often extend
tonear-hemispheric dimensions due
tothe tumor’s spread, whilein PDAC,
the proximity of critical organsatrisk
(OARs), particularly the duodenum,
necessitates strict dose limitations
orreductions.**

Although mono-ionic beams
at ultra-high LET can sterilize
CSCs throughout tumor organoids
or xenografts without spatial
discrimination, achieving uniform
coverage to a CSC-ablative LET
level across the gross tumor
volume (GTV) in patients is
substantially more challenging. The
CLEOPATRA phase II randomized
clinical trial, aiming to improve
overall survival in GBM using
carbon ion radiation therapy
(CIRT), underscores this limitation.
Of the total prescribed RT dose,
only 18 Gy (RBE)—roughly 25%—
was delivered with CIRT, with the
remaining dose administered using
conventional low LET photons,
most likely due to increasing rates
of toxicities such as high-grade
radiation necrosis increasing with
irradiated volume and dose, even
at low LET.**

Although the final results from
CLEOPATRA have not yet been
published, it is plausible that the
CIRT component was insufficient to
yield a measurable survival benefit.
Considering the standard curative-
intent dose of 60 Gy, it is probable
that, even if a signal exists, too
little CIRT was given to capture it.

In other words, directing HPT to
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entire GTVs frequently necessitates
compromising dose and/or LET
below the necessary threshold for
optimal biological effect on the
tumor and CSCs.

In our view, the superior strategy
is the one that LET painting enables,
namely partial volume ablation at
high dose/high LET combinations,
with the remainder of relatively
radiosensitive and non-clonogenic
volumes treated with a lower
intensity/less toxic intervention, or
even none at all. The concept
of therapeutic modulation across
tumor subregions—central to LET
painting—already has a precedent
in clinical practice through spatial
fractionation, which is employed
in the palliative setting for
refractory, unresectable disease.”
Though not technically a novel
approach, spatially fractionated
radiation therapy has resurged
in the literature with improved
delivery mechanisms and the
utilization of immunotherapy in
cancer care. Multiple techniques
appear today; most prevalent is
grid or lattice radiation therapy,
painting a milieu of dose upon a
tumor with focal peaks in dose
surrounded by low-dose valleys,
demonstrating marked response.*
This approach potentially generates
an immunological reaction to
targeted tumor tissue, but the impact
on CSCs is unknown. The grid is
characterized by dose spheres with
relatively random distribution within
a larger, bulkier tumor, allowing the
tumor tissue to provide a safe margin
between dose peaks and OARs.

Focusing on immunological
development and enhanced dose
deposition in hypoxic CSC
regions, the PArtial Tumor
Irradiation Targeting HYpoxic
Segment (PATHY) approach aims
to selectively irradiate tumors in a
more directed manner. PATHY is
directed to one or more “Bystander
Tumor Volume” (BTVs) defined as
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marginal reductions within the
GTV, with the aim of sparing

the surrounding peritumoral
immune microenvironment (PIM)
by subjecting it to tight formal
constraints as a contoured OAR.**
PATHY using photon stereotactic
body radiation therapy (SBRT) and
proton beam therapy (PBT) has
demonstrated success at dramatic
volumetric reductions of the

GTV through bystander effects.***
Refined by Tubin and colleagues
at the MedAustron Ion Therapy
Centre (Wiener Neustadt, Austria),
PATHY is currently administered
exclusively as a technique of
3-fraction daily CIRT.

A transition is now underway from
simple Boolean-based geometric
reductions of the GTV to biologically
informed target delineation, with
the BTV increasingly defined
through functional hypoxia tracer
imaging, such as with *Cu-ATSM
PET.* Carbon-PATHY achieves
significant treated tumor response
and demonstrates methodologically
validated macroscopic abscopal
responses of unirradiated nodal
and distant metastases.** At
the preclinical stage, a recent
experiment of murine xenografts
of breast cancer showed that
microtargeted partial CIRT fields
determined by hypoxia PET
imaging demonstrated an equivalent
abscopal response to that of
whole-volume carbon irradiation on
non-irradiated grafts.*’

Collectively, these murine and
human data support the potential
immunogenicity of confining HPT
target volumes to select HRTVs.
Similar minibeam techniques
have been developed for use
with heavier ions, particularly
neon. Spatially fractionated NIRT
has succeeded in vivo in
murine models at inducing
brisk reoxygenation and tumor-
killing within hypoxic regions
while sparing severe skin
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Figure 1. Representative linear energy transfer (LET) painting case reprinted with permission from Inaniwa et al.® The left column
represents RBE-weighted dose (D), and the right column represents dose-averaged LET (L) for 3 prostate cancer plans generated via
the intensity-modulated composite particle therapy technique, with panels A-B, C-D, and E-F representing the dose and LET variables
for the same plans, respectively. All plans are isodosimetric with variations in LET distribution. Note in plan 1 the uniformly higher LET in
the anterior rectum with an aberrant LET hot spot along the left anterolateral rectal wall, outside the target, that would go undetected
on pure dosimetric analysis. The LET distribution to the organs at risk is corrected in plans 2 and 3, and LET to the target is successfully

escalated isodosimetrically in plan 3.

A D:plani

toxicity compared with broad-
beam NIRT.**' These promising
early findings raise the prospects
of immediate, definitive clinical
applications for revived very

high LET therapy, approaches

that avoid the prohibitive

late toxicities observed in

the initial NIRT experiments

at LBL, which curtailed its

clinical adoption."" Such therapy
would involve LET values
exceeding conventional relative
biological effectiveness (RBE)-based
optimization thresholds, but in
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doing so may approach, and help
define, the LET levels required for
optimized anti-CSC therapy.

HPT and Immunotherapy: Turning
Cold Tumors Hot

HPT may play avitalrolein
achieving more favorable outcomes
forimmunotherapyin cancerssuch
asPDACand GBM for which
effortsinimmunotherapyto this
pointhaveyielded frustratingly little
benefit. PDACis anarchetypal
immunologically “cold” tumor,
demonstrating poor response to

immune checkpointinhibitors

(ICIs) despite overexpression

of PD-L1and CD47. This

resistance stems from complex
genetic and epigenetic feedback
mechanismsthatcollectively
promote animmunosuppressive
tumor microenvironment (TME);
enhance clearance of cytotoxic
agentsand repair of cytotoxic
damage; block activation, expansion,
andinfiltration of cytotoxic and
pro-immune lymphocytes; suppress
antigen recognition; and enable
evasion and suppression of peripheral
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STUDY

INSTITUTION

Inaniwa et al 2 NIRS (Chiba,

Japan)

ION SPECIES

Helium, carbon,
oxygen, neon

Table 1. Studies of Multi-lonic Radiation Therapy

VARIABLE(S) UNDER STUDY

Validation of SMK relative
biological effectiveness (RBE)
model on undifferentiated
carcinoma and PDAC cells

Sokol et al*° GSI (Darmstadt, Helium, oxygen Multi-ionic LET painting
Germany) for overcoming hypoxia
radioresistance effects

Inaniwa et al®  NIRS (Chiba, Proton, helium, LET optimization
Japan) carbon, oxygen via intensity-modulated

multi-ionic radiation therapy
(IMPACT)

Mein et al®

HIT (Heidelberg,
Germany)

Helium, carbon,
oxygen, neon

LET optimization via
multi-ionic hadron arc therapy
(SHArc)

Inaniwa et al®®

National Institutes

for Quantum
Science and

Technology (QST)

(Chiba, Japan)

Helium, carbon,
neon

Adaptation of multi-ionic
therapy planning via SMK
to account for oxygen-
dependent cell responses
(OSMK)

Sakata et al®®

QST (Chiba, Japan)

Combination

helium + oxygen vs

carbon + neon

Silicon microdosimetric
validation validation of MIRT
planning

Inaniwa et al®®

QST (Chiba, Japan)

Helium, carbon,
0Xygen, neon,
silicon

Refinement of 0SMK
accounting for greater range/
variation in LET over
additional cell lines

Inaniwa et al®® NIRS (Chiba, Helium, carbon, Correction of dose
Japan) oxygen, neon calculations for MIRT
Kopp et al*? HIT (Heidelberg, Proton, helium, Initiation development of
Germany) carbon treatment planning system for
MIRT
Inaniwa et al®* NIRS (Chiba, Helium, carbon, Validation of MIRT
Japan) oxygen, neon optimization via lung
substitute material
Masuda et al, QST (Chiba, Japan) Carbon, oxygen, Retrospective validation of
2025% neon LET optimization to GTV for

MIRT in patients with head
and neck cancer (n = 16)

Abbreviations: GSI, GSI Helmholtzzentrum fiir Schwerionenforschung; GTV, gross tumor volume;
HIT, Heidelberg lon Therapy Center; IMPACT, intensity-modulated composite particle therapy; LET,
linear energy transfer; MIRT, multi-ionic radiation therapy; NIRS, National Institute of Radiologi-
cal Sciences; 0SMK, oxygen-effect-incorporated stochastic microdosimetric kinetic model; PDAC,
pancreatic ductal adenocarcinoma; RBE, relative biological effectiveness; SHArc, spot-scanning
hadron arc model; SMK, stochastic microdosimetric kinetic model.

phagocytes.*>* Likewise, GBM
appears tobeimmunologically

cold with expression of PD-

L1foundinamajority of

tumor specimens and correlated

with M2-polarized peripheral
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tumor-associated macrophages
(TAMs), reduced lymphocyte
infiltration, chemoresistance, and

overall poor prognosis, ultimately

failingin clinical evaluationto

yield the hypothesized therapeutic

gains for ICIbased on crude PD-L1
expression on pathology.**”

Emerging datasuggestthatthe
failure of immunotherapyin PDAC
and GBM may reflect, atleastin part,
the central role of CSCs. In GBM,
PD-L1overexpressionisdriven by
B-catenin—the terminal transcription
factor of the canonical Wnt pathway
and akey mediator of CSC-epithelial-
to-mesenchymal transition (EMT)
crosstalkin both PDAC and GBM.
B-Catenin functions ubiquitously as
aneffector of stemnessand EMT
programs. Experimental datain GBM
demonstrate strong co-expression of
CD133and p-catenin, with CD133
knockoutresultingin the suppression
of B-catenin, supporting a causallink
downstream of CD133.%%%

Moreover, GBM cell culture
analysis has found an inverse
correlation between CD133
expression and CD4/CD8 infiltration
while surgical specimen analyses
have found M2 polarization
and immunosuppressive microglia
induction in GBM to be a
product of the same CD133-activated
Akt-Wnt interchange with redundant
additional promotion by the
CSC-associated TGF- pathway.**
Similarly, analysis of PDAC resection
specimens has demonstrated a
correlation between high PD-L1
expression and expression of both
CD133 and CD44 that is lost when
CD8 lymphocyte infiltration is high.*
PDAC data further demonstrate an
immunosuppressive M2 polarization
of TAMs, low TME levels of CD4 and
DC infiltration, relatively high Ty17
levels, high Ty2:Ty1 ratio, and an
anti-immune cytokine balance.””

Collectively, these findings point
to a deep relationship between
the phenomenon of immunological
coldness and the PDAC- and
GBM-CSC biology mediated by
CD133 and CD44. Likewise, the
circulating tumor cells (CTCs)
responsible for metastasis are
the result of EMT-mediated
transformation and extravasation;
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the mobile immune-privileged
circulatory routes, docking and
colonization of distant organs
necessary to complete the metastatic
arc are only possible for CTCs
acquiring a sufficient range and
degree of stemness properties.” 7
Preclinical evidence of the unique
efficacy of high LET therapy

in curbing CSC biology suggests

the very same mechanisms may
overcome native tumor resistance to
immunotherapy, while the clinical
demonstration of abscopality in

the PATHY experience points to
spatially fractionated HPT as the
technical means by which local

RT can be harnessed to achieve
systemic tumor control effects.*

In this context, maximizing the
immunological benefits of HPT
may require more than ICI alone.
Recently developed CAR NK cell
therapies not only yield more
efficient direct tumor cell killing
than CAR T cells, particularly in solid
tumors, but also mimic the action
of HPT in turning immunologically
cold TMEs hot via activation of
cytotoxic T cells and induction of
M1 polarization, all without the
inflammatory toxicities associated
with CAR T therapies and which
might be feared to result from
combining HPT and ICIs.””® Finally,
the immunogenic mechanism of
HPT, that is, cytosolic exposure of
high volumes of tumor DNA, lends
itself well to ongoing work in the
development of personalized cancer
vaccines, showing promising results
in GBM and PDAC in early-stage

clinical trials.®?*

Biological Optimization of
HPT Physics: Calibrating the
Instruments of CSC Eradication

Currently, the LET thresholds
required for complete CSC
sterilization remain unknown.
Available data consistently
demonstrate that CIRT enhances
CSC killing, suppresses EMT, and
reduces the oxygen enhancement
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ratio (OER), and they suggest a
general relationship between LET,
OER, and clonogenic survival.
However, none of these studies

were designed to achieve, nor

did they achieve, complete CSC
eradication. Instead, they relied

on traditional RBE determination
based on D values (the dose

required to achieve 90% cell kill),
which is useful for comparing CSC
sensitivity between CIRT and photon
or proton radiation but insufficient
for defining the LET and dose
conditions necessary to achieve CSC
extinction. Moreover, these studies
did not develop a framework to
characterize clonogenic extinction in
terms of changes in CSC biomarker
expression as a function of LET; they
simply reported expression changes
at a limited number of dose-

LET combinations.”’* Notably, they
were also silent on non-local,
indirect mechanisms of CSC or
tumor control, such as immunogenic
self-potentiation.

Mostimportantly, the LET range
acrossthese studiesis widerthanthe
deltabetween proton/photon LET and
thelowest LET values of the carbon
ion Spread Out Bragg Peak (SOBP)
by multiples stillinadequate tothe
taskevenatits upper boundary; the
aggregate modal LET is 50 keV/um
butits selectionis neverjustified
forthetreatment of CSCs within
published material—50keV/umisa
typical central tendency of whole
tumor coverage by acarbonion
SOBP—and itisassociated only
with enhanced CSCkilling, taking
clear surviving fractionstobea
giVen a priori.88,90,93»96102,104,,106 One
significantreport, drawing upon
amodel determiningan LETy
value of maximum kill efficiency,
insiststhat LET should notexceed
100keV/um because of overkill
effectsand diminishing RBE."*>'"
Conversely, in preclinical settings,
outright CSCeradication hasbeen
achieved by carbonionirradiationat
anarbitrarily determined 120 keV/um

delivered over clinicallyirrelevant
dose/fractionregimens, illustrating
the vast gap between the prominence
of overkillin theliterature and its
actual clinical impact.’®*

Underkill of CSCs, unlike
overkill, is an active clinical
issue with implications for the
prognosis of PDAC or GBM at
any stage of disease and the
expected 100% rate of failure for
every prescription of (rightfully) de
rigueur targeted therapy. Based on
the data on LET/dose/CSC survival
relationships, it is evident that HPT
is a uniquely potent tool for CSC
extirpation, that partial volume
NIRT represents its maximum
killing potency within safety limits,
and that spatial fractionation
may induce immunogenesis further
augmented to abscopality by
biologically guided partial volume
selection and tightly constraining
the PIM as an OAR.

Spatially fractionated and
temporally ultrahypofractionated
combination heavy ion therapy
using the entire arsenal from
helium to neon to ablate HRTVs
defined by biological imaging as
regions enriched with CSCs is the
next logical progression following
PATHY. As shown in SHArc and
IMPACT Monte Carlo modeling,

LET full-spectrum gradients are
achievable and enable dose and/or
LET de-escalation throughout the
LRTV to mitigate the risk of
compromising the PIM.?2##:%0

In turn, LRTV sparing is the

critical limiting step in determining
dose and LET combinations
necessary for achieving clinical

CSC extinction.®*2%%2

* Moreover,
only the delivery of such LET
gradients may potentially extinguish
the biological possibility of tumor
recurrence through the combined
effects of focal, direct CSC killing,
and induction of bystander and
immune secondary mechanisms
transmitted over large relatively

Spared Volume S. 42,46,91-94108-118
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Economics of HPT: Challenges
of Upfront Capital Allocation,
Potential for Long-Term Return,
and Alternatives

A persistent perception that
HPT facilities are prohibitively
expensive to construct and operate
remains a major barrier to the
broader adoption, expansion, and
patient access to this highly
promising treatment modality.
Though the capital requirements
are undeniably high, the overall
economics of HPT is more
nuanced, and often more favorable,
than commonly perceived. A
comparative analysis of the
cost-effectiveness of CIRT vs SBRT
for the treatment of stage I
non-small cell lung cancer at
Gunma University found that
the bulk of the difference
was accounted for by costs
of hospitalizations and ancillary
studies rather than by technical
fees for CIRT, the former of
which could be mitigated or
made more efficient."” The same
institution found the mean total
cost of CIRT was lower than
that of chemoembolization in
the treatment of hepatocellular
carcinoma (¥4,974,278 vs
¥5,284,524)."° A multi-institutional
Japanese analysis found
comparable total costs of treatment
for locally recurrent rectal cancer
using CIRT vs multimodality
conventional treatment (¥4,803,946
vs ¥4,611,100)."" A multi-
institutional European analysis
found that the average cost
per fraction delivered was €1128
at combined CIRT/PBT centers,
€743 at PBT-only centers, and
€233 at photon-only centers.'”
These differences should be
interpreted in light of HPT’s unique
suitability for hypofractionation,
owing to its biological insensitivity
to fractionation, as well as
the potential for HPT-driven
improvements in local control to
reduce health care costs.
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Notably, capital costs and yearly
operational costs for combined CIRT/
PBT, PBT-only, and photon facilities
were respectively found to be €138.6
million, €94.9 million, and €23.4
million, and €36.7 million, €24.9
million, and €9.6 million.'” These
differences in initial and operational
outlays are undoubtedly too much
to bear for many health systems,
even when factoring in cost-reducing
public investment.'” The expansion
of particle therapy capabilities to
include oxygen, neon, and other
heavy ion species not yet in routine
clinical use is sure to exacerbate
cost differences, at least in the short
term. Both the public health benefit
of improved oncologic outcomes
and the potential for long-term
cost savings support a strong case
for increased public investment in
HPT, as well as for international
cooperation and cost-sharing to
facilitate broader access.

However, strategies that enable
functional delivery of high LET
therapy to larger populations
than can be served by HPT
are in the early phases of
clinical development and deserve
recognition. A conjugate of the
high LET a-particle emitting
radionuclide actinium-225 (Ac-225)
to the somatostatin receptor
binding complex DOTATATE has
been used in the early stage
trials of gastrointestinal (GI)
origin neuroendocrine tumors and
metastatic paragangliomas, in the
latter of which, in an admittedly
small data set, the *Ac-DOTATATE
conjugate successfully controlled
disease that had failed B-particle
emitting lutetium-177 therapy.'****

A clinical trial is underway
investigating the **Ac-DOTATATE
conjugate for metastatic or
unresectable somatostatin receptor-
expressing breast cancers.'” Alpha
emitters are a promising low-barrier
means of delivering high LET
therapy to appropriately selected
patients, albeit limited anatomically

High LET Eradication of CSCs

to tumors to which they can be
feasibly and reliably distributed,

as well as far simpler than 8
emitters in terms of radiation safety
precautions.

Another approach utilizes
intratumoral infusion of
nanoparticles composed of high
Z materials with high electron
density to increase the probability of
ionization events for cells exposed
to low LET radiation, functionally
creating a field of high LET
radiation delimited by the natural
boundaries of gross tumor without
risk of distribution to surrounding
normal tissues. The phase II/III
Act.In.Sarc. trial randomized 180
patients with locally advanced
soft-tissue sarcoma indicated for
neoadjuvant RT to intratumoral
injection of the hafnium oxide-based
NBTXR3 nanoparticle a week prior to
RT to 50 Gy in 25 fractions followed
in 5 weeks by surgical resection
vs neoadjuvant monotherapy with
RT and surgical resection after 5
weeks. The primary endpoint of
pathologic complete response was
doubled in the NBTXR3 arm over
the RT-only arm (16% vs 8%)
with all grade 3+ acute toxicity
<10% and nearly identical rates of
grade 3-4 wound complications."”*'?
The same agent has been
incorporated into a pilot phase
I trial for borderline resectable
and unresectable non-metastatic
PDAC, in which patients undergo
intratumoral infusion of NBTXR3
prior to a 15-fraction course of RT."®
Finally, clinical exploration of boron
neutron capture therapy, which uses
intravenous administration of B
preferentially taken up by tumor
cells then bombarded with slow
neutrons to induce cell killing by
high LET a-particles and lithium
ions, is active and expanding.’*"**

Strategies such as those just
described cannot recapitulate all
of the benefits and versatility
of HPT, but are nevertheless a
promising means of bridging the
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gap in access to offer some patients
with aggressive/resistant cancers
the opportunity for high LET
therapeutic impact. These efforts
should not be seen as exclusive

of or in competition with HPT,

but rather as complementary and
potentially synergistic.

High LET Eradication of CSCs

Conclusion

As discussed in Part I, high
LET HPT has been shown in
reproducible, basic research to be
effective in the sterilization of CSCs.
Consequently, it holds considerable
promise as a means of significantly
improving the prognostic paradigms
of seemingly intractable human
cancers whose outcomes are driven
by their CSC biology. These findings
are supported by early clinical
studies demonstrating improved
outcomes through crude deployment
of HPT in the treatment of
PDAC and GBM.'*"** Moreover, the
benefits of HPT appear to be
synergistic with conventional and
next-generation systemic therapies,
though the ideal combinations and
sequencing are yet to be determined.
Economic and logistical challenges
to expanding the reach of HPT are
real but not insuperable, and the
reduction it could entail in terms
of reduced cancer recurrences may
yield reductions in overall health
care costs in the long run.

Literature to this point
hasdownplayed the need for
particlesheavierthan carbon
ionstoachievetrue CSC
eradication and overemphasized
the so-called “overkill” problem.
Safeimplementation of oxygen or
NIRT, however, necessitates selective
targeting of high biological risk
subvolumes within gross tumor to
ensure critical OARs are not subjected
to LET overdose. Multi-ionic LET
painting models have been developed
andvalidated as accomplishing this
task. Likewise, clinically validated,
state-of-the-artfunctional imaging

Applied Radiation Oncology

technologies capable of detecting
surrogates for CSCbiologyare
already available, buthave yetto
berecognized for their potential
utility in radiation oncology, let
aloneindefining HRTVs. Intriguingly,
preclinical evidence suggests that
selectively targeting CSC biology
forhigh LET ablation may be the
most promising approach to realizing
thebroader clinical potential of
HPT, including the induction of
immunogenic and abscopal cancer-
killing effects. Inthis way, HPT may
function notmerely asalocalized
treatmentbutserve asaninstrument
of systemic cancer control.

Taken together, these advances
suggest that the physics of high
LET HPT may offer a radiobiological
solution to the problem of CSCs and
a tangible opportunity to alter the
natural history of aggressive and
treatment-refractory malignancies.'®
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