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Abstract
In the past several decades, the delivery of radiation therapy has become increasingly intricate and precise. Such
advancements were observed in conjunction with abundant multimodal data available for analysis; these include
sophisticated diagnostic imaging, electronic health records, and digital pathology. The impact of artificial
intelligence (AI) has become more prominent as numerous prior and ongoing prospective studies aim to integrate
it into clinical care in radiation oncology. This review article provides an overview of such prospective studies and
examines the role of AI in radiation therapy. By providing an understanding of recent trends in AI, we hope to
contribute to improved patient outcomes and precision medicine in radiation oncology.
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Introduction
Radiation therapy has progressed

significantly over the past dec-
ades through such advances
as stereotactic body radiation
therapy (SBRT) for lung can-
cer1-3 and oligometastatic cancer,4-6

proton therapy for leptomenin-
geal metastasis,7 magnetic reso-
nance imaging (MRI)-guided SBRT
for prostate cancer,8 MRI-guided
adaptive radiation therapy for

pancreatic cancer,9 and adaptive
radiation therapy for head and
neck cancer.10 In addition, pre-
cision medicine has evolved to
improve patient selection for various
treatment approaches, including
prostate-specific membrane antigen
(PSMA) positron emission tomog-
raphy (PET) for prostate cancer,
11,12F-fluoromisonidazole PET for
head and neck cancer, 13,14gal-
lium DOTATATE PET for meningi-
oma,15,16 21-gene recurrence scores

for breast cancer,17,18 osimertinib
after definitive chemoradiation for
stage III epidermal growth factor
receptor (EGFR)-mutant non-small
cell lung cancer,19 and chimeric
antigen receptor T-cell therapy.12

With such advancements
in precision medicine, cancer
genetics, and imaging modalities
leading to abundant multimodal
data available for health care
professionals to interpret, artificial
intelligence (AI) has emerged
to leverage such data.20  For
example, AI-based algorithms have
greatly improved early diagnosis of
breast cancer,21  pancreatic cancer,22

lung cancer,23  and skin cancer.24

Furthermore, generative AI has
been shown to answer questions
with more empathy than humans25

and to assist with medical
documentation.26  In radiation
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oncology, several AI-related studies
have emerged to minimize
unplanned hospitalization27  and
detect extranodal extension (ENE)
in head and neck cancer.28,29

Since then, numerous reviews have
summarized the role of AI in
radiation oncology.30-33  However,
none have focused on prospective
studies incorporating AI into
practice. In this review, we aimed
to highlight the overview of recent
trends in the application of AI in
radiation oncology based on prior
and ongoing prospective studies.

Methods
To identify relevant prospective

studies on AI trends in radiation
oncology, a literature search
was conducted of the following
electronic databases: PubMed,
Medline, and Google Scholar. The
following keywords were used:
“radiation,” “radiation oncology,”
and “artificial intelligence.” The
search was limited to publications
ranging from January 2002 to
December 2024 and excluded
retrospective studies, systematic
reviews, case reports, conference
abstracts, and expert opinion
articles. Additional filters included
utilizing only English language-
written articles. Article titles and
abstracts were then reviewed
after initial screening, followed by
full-text review prior to finalizing
study inclusion.

Current clinical trials
were searched utilizing the
ClinicalTrials.gov website with
the following keywords: “cancer,”
“artificial intelligence,” and
“radiation.” Studies that were
completed or active (recruiting or
not) were included, while those
that were suspended or withdrawn
were excluded. Trials were further
categorized based on type, with
only interventional studies included

with no specific date range.
When evaluating prospective studies
or clinical trials, two reviewers
determined the eligibility of such
studies for inclusion.

Results
Of 4469 articles found through our

literature search, 234 were initially
identified as prospective studies.
After reviewing abstracts and full
texts to confirm their eligibility, 30
studies met our criteria, as shown
in Table 1.

AI in Prostate Cancer

AI has been investigated
extensively to improve outcomes of
patients with prostate cancer. In
earlier years, because of substantial
interobserver disagreements in
Gleason grade among pathologists,61,62

AI-assisted digital pathology
algorithms based on whole-slide
images of hematoxylin and eosin-
stained tissues were developed
to improve reproducibility in
determining Gleason grade,63 which
were recognized by Food and
Drug Administration and other
regulatory agencies.63

Beyond assessment of Gleason
grades, the role of digital pathology
has been investigated in radiation
oncology. Esteva et al. initially
leveraged five NRG Oncology
phase III randomized clinical
trials (NRG/RTOG 9202, 9413, 9910,
0126, and 9408) that included
patients with localized prostate
cancer who received radiation with
or without androgen-deprivation
therapy (ADT).56 Self-supervised,
prognostic, and multimodal AI
architecture was developed based
on clinical variables (age, Gleason
primary and secondary grades,
T stage, and baseline PSA)
from over 5600 patients and
imaging features from over 16 000
histopathology slides.56 Across all

endpoints, AI outperformed the
National Comprehensive Cancer
Network (NCCN) risk-stratification
tool by 9.2%-14.6% for relative
improvements in area under the
receiver operating characteristic
curve (AUC).56

With its early success, digital
pathology was further investigated
for its predictive ability. Spratt et al.
utilized four NRG Oncology phase
III clinical trials (NRG/RTOG 9202,
9413, 9910, 0126) to develop a
similar multimodal AI architecture
and validated its performance on
the NRG/RTOG 9408 dataset.57 The
primary objective of this study
was to identify a subgroup of
patients who might benefit from
adding ADT to radiation.57 The
development cohort comprised over
2000 patients, with the majority
having intermediate-risk prostate
cancer, while the validation cohort
consisted of over 1500 patients, with
more than half having intermediate-
risk prostate cancer.57 Over a
third of patients in the validation
cohort were classified as predictive
model-positive, demonstrating an
absolute improvement of 10% by
adding ADT for distant metastasis-
free survival and prostate-cancer-
specific survival at 15 years.57

However, no differential treatment
benefits were identified between
predictive model subgroups for
metastasis-free survival and overall
survival.57 Spratt et al. performed
a separate analysis using six
NRG Oncology clinical trials (NRG/
RTOG 9202, 9408, 9413, 9910, 9902,
0521), validating the multimodal
AI algorithm as prognostic for
distant metastasis and prostate
cancer-specific mortality among
patients with high-risk prostate
cancer.59 Subsequently, the NCCN
Guideline for prostate cancer
included ArteraAI Prostate as the
first AI-based tool with prognostic
and predictive benefits from ADT
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Table 1. Prior prospective studies

AUTHORS YEAR DISEASE SITE PROSPECTIVE DATA DATA TYPES MAIN FINDINGS

Zeleznik et al.34 2021 Breast Not available CT scan With deep learning assistance, heart
segmentation time was significantly
reduced. Expert accuracy was
comparable with deep learning-only
segmentations.

Ma et al.35 2023 Breast ClinicalTrials.gov ID:
NCT05609058

CT scan Deep learning model identified the
lead wire markers in the CT scan
images, and the organ feature based
on such markers was correlated with
ipsilateral lung V20.

Dembrower et al.14 2023 Breast ScreenTrustCAD Mammogram Replacing one radiologist with
AI for independent assessment
of screening mammograms was
non-inferior for cancer detection
compared with reading by two
radiologists.

Preetha et al.36 2021 CNS CORE, CENTRIC,
EORTC 26101

MRI scan Synthetic postcontrast MRI scan
based on pre-contrast MRI scanning
using deep learning was feasible
with no statistically significant
difference in the contrast-enhancing
tumor burden when compared to
postcontrast MRI scanning.

Tsang et al.37 2024 CNS Not available CT scan 94% of ML plans and 93% of manual
plans were deemed to be clinically
acceptable. ML plans were able to
give 1 Gy less radiation to the
normal brain than the manual plan.
ML plans required 45 fewer minutes
on average to create compared to
manual plans.

George et al.38 2024 CNS ClinicalTrials.gov ID:
NCT02336165

MRI scan First on-treatment MRI features
were correlated with overall and
progression-free survival, while
baseline MRI features were not.

Hong et al.27 2020 General SHIELD-RT Clinical variables AI-based algorithm based on routine
electronic health record data triaged
patients and reduced acute care
visits during treatments.

Friesner et al.39 2022 General NCT02649569,
NCT03102229, NCT03115398

Daily step counts Daily step counts using an ML model
were correlated with hospitalizations.

Kehayias et al.40 2024 General Not available CT scan The integration of Deep Learning
On-Demand Assistant, an automated
clinical platform to help with
auto-segmentations and QA reporting
using AI, into radiation oncology
clinic workflow was feasible.
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Table 1. continued

AUTHORS YEAR DISEASE SITE PROSPECTIVE DATA DATA TYPES MAIN FINDINGS

Natesan et al.41 2024 General SHIELD-RT Clinical variables High-risk patients identified by
the AI-based algorithm experienced
lower total medical costs from
twice-weekly evaluations.

Wang et al.42 2022 GI RTOG 0822 CT scan AI-based algorithm using clinical
variables, DVH, and radiomic features
predicted pCR.

Wesdorp et al.43 2023 GI CAIRO5 CT scan A DL autosegmentation model
accurately segmented the liver and
metastatic lesions.

Fremond et al.44 2023 GYN PORTEC-1, PORTEC-2,
PORTEC-3, TransPORTEC

Whole-slide images
of H&E slides

A DL model predicted molecular
classification.

Walker et al.45 2014 Head/Neck Not available CT scan Autosegmentation of organs at
risk reduced the amount of time
needed for segmentation, but expert
oversight is still required for
accuracy.

Men et al.46 2019 Head/Neck RTOG 0522 CT scan AI-based algorithm predicted the
incidence of late xerostomia.

Sher et al.47 2021 Head/Neck Not available Radiation plans AI-based decision support tool
improved the dose metrics for organs
at risk.

Osapoetra et al.48 2021 Head/Neck ClinicalTrials.gov ID:
NCT03908684

Quantitative
ultrasound

AI-based algorithm predicted
treatment response of involved lymph
nodes.

Mashayekhi et al.49 2023 Head/Neck Not available Radiation plans AI-based decision support tool
improved uniformity of practice.

Kann et al.29 2023 Head/Neck ECOG/ACRIN 3311 CT scan AI-based algorithm predicted
extranodal extension more effectively
than did radiologists.

Sher et al.50 2023 Head/Neck INRT-AIR CT scan AI-based algorithm identified involved
or suspicious lymph nodes, and
there was no solitary elective nodal
recurrence at 2 years without elective
nodal irradiation.

Nicolae et al.51 2020 Prostate Not available Ultrasound AI-based radiation treatment
planning reduced the time required
for planning and was considered
clinically acceptable.

McIntosh et al.52 2021 Prostate Not available Radiation plans AI-based radiation treatment
planning reduced the time required
for planning and was considered
clinically acceptable.

Sanders et al.53 2022 Prostate Not available MRI scan Autosegmentation of prostate and
organs at risk was considered
clinically feasible.
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among patients with localized
prostate cancer.64

AI in Head and Neck Cancer

Other malignancies targeted by
extensive research in AI are
head and neck cancers, especially
with respect to radiomics. For
example, ENE is a known adverse
feature associated with poor
locoregional control.65,66 However,
ENE identification has been largely
based on pathologic evaluation,
since radiographic determination has
been inconsistent.67-69 As a result,
24%-31% of patients with p16+ head
and neck cancer receive trimodality
therapy.70,71 To reduce this knowledge
gap, Kann et al. developed a deep-
learning (DL) algorithm based on 270
patients from a single institution with
over 650 lymph nodes segmented.72

The model predicted ENE and nodal

metastasis with an AUC of 0.91 for
both endpoints.72 Based on such
early success, Kann et al. utilized
validation datasets of 82 patients with
130 lymph nodes segmented from
Mount Sinai Hospital and 62 patients
with 70 lymph nodes segmented from
The Cancer Genome Atlas imaging
data through The Cancer Imaging
Archive.28 The DL model predicted
ENE with an AUC of 0.84-0.90 on these
validation datasets, outperforming
diagnostic radiologists and improving
interobserver agreement among
these radiologists.28 Owing to the
small sample size of p16-positive
oropharyngeal cancer in these
retrospective datasets,28 further
validation was performed using
a multicenter phase II clinical
trial, ECOG-ACRIN 3311.29 The DL
model was retrained using three
retrospective datasets as mentioned
previously, ultimately identifying 178

patients from ECOG-ACRIN 3311
with 313 manually segmented lymph
nodes.29 It had an AUC of 0.86 for the
identification of ENE, outperforming
four radiologists, with a limitation
of node level segmentation required
prior to independent testing.29

Another evolving paradigm for
treatment de-escalation among
patients with head and neck cancer is
to reduce treatment volume. Several
phase II clinical trials and a large
retrospective study demonstrated
the feasibility of reducing the dose
of elective nodal irradiation to
30-40 Gy.73-75 To omit elective nodal
irradiation, colleagues from the
University of Texas Southwestern
Medical Center evaluated several
DL models using 129 patients and
over 700 lymph nodes segmented
with AUC of 0.88-0.98,76-78 comparable
to the AUC of 0.91 from the
study by Kann et al.72 Subsequently,

Table 1. continued

AUTHORS YEAR DISEASE SITE PROSPECTIVE DATA DATA TYPES MAIN FINDINGS

Thomas et al.54 2022 Prostate ClinicalTrials.gov ID:
NCT03238170

Radiation plans AI-based algorithm predicted those
who would benefit from rectal spacer
placement.

Johnsson et al.55 2022 Prostate OSPREY PSMA PET/CT AI-based algorithm identified
potential lesions and autosegmented
organs.

Esteva et al.56 2022 Prostate NRG/RTOG 9202, 9413,
9910, 0126

Whole slide images
of H&E slides

AI-based algorithm risk stratified
and identified patients with poor
prognoses.

Spratt et al.57 2023 Prostate NRG/RTOG 9202, 9413,
9910, 0126, 9408

Whole slide images
of H&E slides

AI-based algorithm predicted
patients who would benefit from
androgen deprivation therapy.

Ross et al.58 2024 Prostate NRG/RTOG 9902 Whole slide images
of H&E slides

AI-based algorithm risk stratified
and identified patients with poor
prognoses.

Spratt et al.59 2024 Prostate NRG/RTOG 9202, 9408,
9413, 9910, 9902, 0521

Whole slide images
of H&E slides

AI-based algorithm risk stratified
and identified patients with poor
prognoses.

Wong et al.60 2020 Prostate/Head
Neck/CNS

Not available CT scan AI-based algorithm reduced the
time required for contouring and
autosegmented at-risk organs and
target volumes.

Abbreviations: AI, artificial intelligence; CT, computed tomography; CNS, central nervous system; DVH, dose volume histogram; H&E, hematoxylin and
eosin; GI; gastrointestinal, GYN, gynaecological; MRI, magnetic resonance imaging; ML, machine learning; PSMA, prostate specific membrane antigen;
pCR, pathologic complete response; QA, quality assurance.
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Sher et al. incorporated this model
in the prospective phase II INRT-
AIR trial.50 Of 67 patients with
nonmetastatic head and neck cancer
who underwent definitive radiation
or chemoradiation, an average
of 31 lymph nodes per patient
were evaluated by the DL model,
determining that approximately 10%
were involved.50 At a median follow-
up of 33 months, overall and
progression-free survival at 2 years
were favorable at 91% and 82%,
respectively.50 One patient with
heavy marijuana use had an out-of-
field elective nodal recurrence with
concurrent distant metastasis, but
the study otherwise found favorable
quality of life outcomes with no
solitary elective nodal failure.50

AI in Supportive Care

In addition to improving
oncologic outcomes, another area
incorporating AI is the effort to
reduce acute care visits, such
as emergency department visits
and unplanned hospitalizations.
Predicting such events has been
investigated among patients without
a cancer diagnosis.79-82

In radiation oncology, Hong
et al. initially developed a
machine learning (ML) model
based on nearly 7000 patients
with over 8000 treatment courses
at a single institution; this
model included variables such
as baseline demographics, disease
and treatment characteristics, prior
acute care visits, laboratory values,
and recent vital signs.83 Internal
validation demonstrated an AUC of
0.80 for the ML model in predicting
acute care visits.83 Subsequently,
Hong et al. performed the SHIELD-
RT single-institution, prospective
quality improvement study.27 This
model was utilized to identify
high-risk patients, who were defined
as having more than a 10% risk of
acute care visits, and randomized
them to twice-weekly on-treatment

visits versus standard of care.27 Of
nearly 1000 treatment courses, 311
were evaluated as high-risk courses,
with the majority of patients having
gastrointestinal cancer or primary
brain cancer.27 The ML model had
a favorable performance with an
AUC of 0.82 for triaging patients
to high- versus low-risk for acute
care visits, and fewer than 3% of
low-risk patients had acute care
visits.27 Twice-weekly evaluation led
to a reduction from 22% to 12%
of acute care visits during radiation
therapy, the primary endpoint of
this study.27 Furthermore, a post-hoc
economic analysis showed that
such a reduction in acute care
visits translated to lower health
care costs.41

Ongoing Clinical Trials

Table 2 consists of a list
of ongoing clinical trials that
incorporate AI. In particular, a
multimodal AI risk-stratification
developed by Spratt et al.57,59 has
been incorporated into two such
clinical trials. The HypoElect study
(ClinicalTrials.gov ID: NCT06582446)
is a single-arm phase II clinical
trial that consists of patients with
NCCN high-risk, multimodal AI
high-risk prostate cancer and is
evaluating the role of whole-pelvis
radiation in five fractions with
radiation dose escalation using
brachytherapy and two years of
ADT. The second study is the
(ClinicalTrials.gov ID: NCT06772441),
a single-arm, phase II HypoPro
clinical trial comprising patients
with NCCN high-risk, multimodal
AI low-/intermediate-risk prostate
cancer and is investigating SBRT in
combination with brachytherapy and
concurrent ADT. Additionally, while
most ongoing clinical trials leverage
AI for adaptive radiation therapy
(Table 2), another noteworthy study
is a randomized clinical trial
by researchers at the University
of Hong Kong (ClinicalTrials.gov

ID: NCT06636188). It is the first
prospective study incorporating a
chatbot, Digi-Coach, to help reduce
physical and psychological distress
versus usual nursing care among
patients with head and neck cancer.

Limitations

Limitations of this study
include its utilization only of
prospective studies while excluding
retrospective studies and other
types of journal articles. The
rationale for this decision is that
several published reviews already
incorporate retrospective studies to
discuss the role of AI in radiation
oncology.30-33 As a result, however,
bias may be introduced toward
reporting studies from major cancer
centers with access to experts
with significant AI technical skills.
Subsequently, results from these
prospective studies may not be
generalizable to or implemented in
smaller community cancer centers
without access to such AI expertise.
For instance, significant barriers
hindered implementation of the
SHIELD-RT trial process; these
included labor-intensive, manual
verification of treatment course data
for each eligible patient, generating
and verifying AI predictions by
multiple investigators for each
enrolled patient, and manually
deploying clinical alerts for treating
physicians and enrolled patients
to ensure that the intervention
was completed on time per
protocol.84 In addition, discussion of
commercially available technologies
is beyond the scope of this review.
These have been comprehensively
discussed by NRG Oncology in
its summary of the roles of
commercial products in adaptive
radiation, autosegmentation,
treatment planning, and clinical trial
development.85-88 Lastly, despite our
efforts to include prospective AI
data, we may have inadvertently
excluded other relevant studies from
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Table 2. Ongoing Prospective Studies

CLINICAL TRIAL CLINICAL
TRIALS.GOV ID

START
DATE

ESTIMATED
END DATE

STUDY DESIGN ROLE OF AI STATUS DISEASE
SITE

Artificial IntelligenceI for

Prostate Cancer Treatment

Planning

NCT04441775 2020 2022 Observational Improve consistency

and quality of radiation

treatment plans.

Completed Prostate

Two Studies for Patients

With High Risk Prostate

Cancer Testing Less Intense

Treatment for Patients With

a Low Gene Risk Score

and Testing a More Intense

Treatment for Patients With

a High Gene Risk Score, The

PREDICT-RT Trial

NCT04513717 2020 2033 Interventional Radiation therapy

quality assurance

using an AI algorithm.

Recruiting Prostate

ARtificial Intelligence for

Gross Tumor Volume

Segmentation (ARGOS)

NCT05775068 2021 2024 Observational Autosegmentation of

GTV on CT scan.

Active, not

recruiting

Thoracic

Artificial Intelligence in

Functional Imaging for

Individualized Treatment of

Head and Neck Squamous

Cell Carcinoma Patients

(KIVAL-KHT)

NCT05192655 2021 2026 Observational Analysis of diagnostic

imaging and clinical

and histopathological

data to predict

outcomes.

Recruiting Head/Neck

AI for Head Neck Cancer

Treated With Adaptive

RadioTherapy (RadiomicART)

NCT05081531 2021 2024 Interventional Analysis of diagnostic

imaging to predict

outcomes and

toxicities.

Recruiting Head/Neck

PostRadiotherapy MRI-based

AI System to Predict

Radiation Proctitis for Pelvic

Cancers

NCT04918992 2021 TBD Observational Analysis of

post-radiation MRI

scan to predict

proctitis.

Unknown

status

General

Clinical Validation of

AI-Assisted Radiotherapy

Contouring Software for

Thoracic Organs At Risk

NCT05787522 2022 2024 Observational Autosegmentation of

organs at risk on CT

scan.

Completed Thoracic

Simulation-Free

Hippocampal-Avoidance

Whole Brain Radiotherapy

Using Diagnostic MRI-Based

and Cone Beam

Computed Tomography-

Guided On-Table Adaptive

Planning in a Novel Ring

Gantry Radiotherapy Device

NCT05096286 2022 2022 Interventional Simulation-free

workflow using

a semi-automated

planning based on AI.

Completed CNS

The Impact of Radiotherapy

on Oligometastatic Cancer

NCT05933876 2022 2037 Observational Analysis of clinical

data, medical images,

and biological samples

to predict who will

benefit from radiation

to oligometastatic

sites.

Recruiting General
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Table 2. continued

CLINICAL TRIAL CLINICAL
TRIALS.GOV ID

START
DATE

ESTIMATED
END DATE

STUDY DESIGN ROLE OF AI STATUS DISEASE
SITE

Intensive Symptom

Surveillance Guided by

Machine Learning-Directed

Risk Stratification in Patients

With Non-Metastatic Head

and Neck Cancer, The

INSIGHT Trial

NCT05338905 2022 2027 Interventional Analysis of clinical data

to identify high-risk

patients who will

benefit from symptom

surveillance

Recruiting Head/Neck

Artificial Intelligence in CNS

Radiation Oncology (AI-RAD)

NCT06036394 2023 2028 Observational Autosegmentation of

tumor and organs at

risk, use radiomics to

predict toxicities and

outcomes.

Active, not

recruiting

CNS

Stereotactic Body

Radiation Therapy

Planning With Artificial

Intelligence-Directed Dose

Recommendation for

Treatment of Primary or

Metastatic Lung Tumors,

RAD-AI Study

NCT05802186 2023 2026 Interventional AI to guide radiation

dose for primary

lung cancer and lung

metastases.

Recruiting Thoracic

Adaptive Radiation in Anal

Cancer

NCT05838391 2023 2025 Interventional Adaptive radiation

using AI.

Recruiting GI

Randomized Evaluation

of Machine Learning

Assisted Radiation Treatment

Planning versus Standard

Radiation Treatment

Planning

NCT05979883 2023 2026 Interventional-Phase III AI-assisted radiation

treatment planning.

Recruiting Head/Neck

MR-guidance in

Chemoradiotherapy for

Cervical Cancer (AIM-C1)

NCT06142760 2023 2026 Interventional Adaptive radiation

using AI.

Recruiting GU

Daily-Adaptive Stereotactic

Body Radiation Therapy

for Biochemically Recurrent,

Radiologic Apparent Prostate

Cancer After Radical

Prostatectomy

NCT05946824 2023 2028 Interventional-Phase II Adaptive radiation

using AI.

Recruiting Prostate

Computed Tomography-

Guided Stereotactic Adaptive

Radiotherapy (CT-STAR) for

the Treatment of Central

and Ultra-Central Early-Stage

Non-Small Cell Lung Cancer

NCT05785845 2023 2026 Interventional Adaptive radiation

using AI.

Recruiting Thoracic

A Chatbot to Reduce

Physical and Psychological

Distress of Patients With

Head and Neck Cancer

Undergoing Radiotherapy

NCT06636188 2024 2027 Interventional AI-based patient

navigator chatbot to

reduce physical and

psychological distress.

Active, not

recruiting

Head/Neck
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Table 2. continued

CLINICAL TRIAL CLINICAL
TRIALS.GOV ID

START
DATE

ESTIMATED
END DATE

STUDY DESIGN ROLE OF AI STATUS DISEASE
SITE

Glioma Adaptive

Radiotherapy With

Development of an Artificial

Intelligence Workflow

(GLADIATOR)

NCT06492486 2024 2028 Interventional-Phase II Adaptive radiation

using AI.

Not yet

recruiting

CNS

AI as an Aid for

Weekly Symptom Intake in

Radiotherapy

NCT06525181 2024 2024 Interventional Medical

documentation for

on-treatment visits to

improve accuracy and

efficiency.

Not yet

recruiting

General

A phase II Clinical Trial

of Artificial Intelligence-

assisted One-stop

Radiotherapy for Breast

Cancer After Breast-

conserving Surgery (BC-AIO)

NCT06686459 2024 2027 Interventional-Phase II Autosegmentation and

radiation treatment

planning.

Not yet

recruiting

Breast

Evaluation of a Novel Auto

Segmentation Algorithm for

Normal Structure Delineation

in Radiation Treatment

Planning

NCT06200116 2024 2026 Observational Autosegmentation. Recruiting General

Online Adaptive

Radiotherapy for

Nasopharyngeal Carcinoma

(OART)

NCT06516133 2024 2030 Phase III Clinical Trial Adaptive radiation

using AI.

Recruiting Head/Neck

One Fraction Simulation-Free

Treatment With CT-Guided

Stereotactic Adaptive

Radiotherapy for Patients

With Oligometastatic and

Primary Lung Tumors (ONE

STOP)

NCT06236516 2024 2025 Phase III Clinical Trial Adaptive radiation

using AI.

Recruiting Thoracic

Artificial Intelligence to

Personalize Prostate Cancer

Treatment (the HypoElect

Trial) (HypoElect)

NCT06582446 2024 2027 Interventional-Phase II Patient selection and

risk stratification.

Recruiting Prostate

Artificial Intelligence

Driven Personalisation

of Radiotherapy and

Concomitant Androgen

Deprivation Therapy for

Prostate Cancer Patients

(the HypoPro Trial) (HypoPro)

NCT06772441 2024 2027 Interventional Patient selection and

risk stratification.

Recruiting Prostate

RAdiotherapy With FDG-PET

Guided Dose-PAINTing

Compared With Standard

Radiotherapy for Primary

Head and Neck Cancer-3

(RADPAINT-3)

NCT06297902 2024 2030 Interventional Analysis of blood

samples to predict

tumor response and

toxicities.

Recruiting Head/Neck
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our review. Further studies are
warranted to capture the growing
complexity of AI and its impact in
radiation oncology.

Conclusion
Radiation oncology is poised to be

influenced substantially by AI in the
coming decades. Emerging AI tools
will streamline radiation treatment
planning and adaptive radiation,
guide treatment recommendations
by improving patient selection based
on digital pathology and radiomics,
and tailor supportive care to reduce
acute care visits. As a result, such
efforts will translate to further
progress in radiation oncology and
patient outcomes.
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