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Multimodal imaging plays an 
important role in epilepsy evaluation 
to localize the source of seizures and 
is crucial for successful surgical in-
tervention in drug-resistant cases. Up 
to one-third of epilepsy patients have 
nonlesional brain MRIs. Glutamate 
levels in the brain are known to be 
increased in epileptogenic foci. Mag-
netic resonance spectroscopy (MRS) 
has been used to detect brain gluta-
mate levels, but chemical exchange 
saturation transfer (CEST) imaging 
has demonstrated higher sensitivity 
and spatial resolution. 

Recent data suggest that glutamate 
CEST is promising to identify the ep-
ileptogenic zone(s) in drug-resistant 
epilepsy patients without identifiable 
lesions on more conventional imag-
ing and thus improve their prognosis. 
This article serves as an introduction 
to CEST for radiologists in the context 
of epilepsy imaging applications and 
their accompanying challenges. 

Epilepsy Facts
Epilepsy is a central nervous 

system disorder characterized 
by disruptive electrical neuronal 
activity that results in recurrent 
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seizures. It is a devastating disease 
that affects more than 46 million 
people worldwide.1 Uncontrolled 
seizures may prevent activities such 
as driving and employment, leading 
to stigmatization, social isolation, 
and psychological harm.2 Epilepsy 
is associated with 11 times the odds 
of premature mortality compared to 
the general population.3 The condi-
tion also inflicts a burden on society, 
costing an estimated  $10-12 billion 
in medical expenditures and indirect 
costs annually in the United States.4,5 
The primary treatment for epilepsy 
is antiepileptogenic medication. 
However, approximately one-third of 
patients are drug-resistant and may 
benefit from surgical intervention,6-8 
including ablation and minimally 
invasive surgery.9,10 Localization-re-
lated epilepsy (LRE) is the most 
common type, accounting for 80% of 
drug-resistant patients.9 Localizing 
the epileptogenic source increases 
the chance of successful postsurgical 
outcomes by up to three times.11,12 

Current Epilepsy Imaging
High-resolution images of brain 

structure and pathology can be 

obtained by MRI using tissue proper-
ties of T1 and T2 relaxation. Current 
diagnostic techniques have found 65% 
of LRE cases to be temporal lobe epi-
lepsy (TLE),13,14 resulting in favorable 
surgical outcomes, with 70-80% of pa-
tients seizure-free post-treatment.15-19 
Conventional MRI has found that 
two-thirds of TLE patients demon-
strate mesial temporal sclerosis (MTS), 
including the hippocampus, amygdala, 
and parahippocampal gyrus.15 Howev-
er, subtle or early-stage epileptogenic 
lesions may not alter brain physiology 
and morphology enough to exhibit 
detection by conventional MRI. In 
addition, one-third of drug-refracto-
ry TLE patients have no detectable 
lesions on conventional MRI,6,12-15,19,20 
and are up to three times more likely 
to have worse surgical outcomes than 
patients with lesional MRIs.11,21 Despite 
this, histopathology is abnormal in 
approximately 87% of nonlesional MRI 
epilepsy patients, suggesting current 
imaging technology is unable to detect 
the existing pathology.22 

Positron emission tomography 
(PET) with fluorodeoxyglucose (FDG) 
measures glucose metabolism, which 
is tightly connected with neuronal 
activity. The most common PET trac-
er in epilepsy localization for clinical 
practice, FDG is transported into 
the blood cells and phosphorylated 
by hexokinase to form FDG-6-phos-
phate. This step essentially traps it in 
the cell, and the positron radiation 
produced is subsequently measured. 
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Interictal FDG-PET imaging reveals 
decreased uptake, reflecting hy-
pometabolism, at epileptogenic foci; 
resection of these correlates with 
positive surgical outcomes.23-25

In pediatric patients, PET has 
been found to be more effective than 
conventional MRI in detecting subtle 
lesions; a recent study found that 
lesions were missed by MRI in up to 
66% of patients but detected by PET 
in 77% of patients.26 FDG-PET imaging 
is usually combined with another mo-
dality, such as computed tomography 
(PET/CT). However, combining with 
MRI (PET/MR) results in equivalent 
sensitivity to PET/CT while providing 
the advantages of lower radiation 
exposure and lower dose to the brain 
and eyes owing to the acquisition of 
images in a single session.27 Overall, 
hybrid PET/MR imaging, compared 
to MRI alone, increases sensitivi-
ty and epileptogenic abnormality 
identification, resulting in improved 
seizure-free outcomes.28,29 

Nevertheless, there are several 
limitations to PET utilization, includ-
ing availability, radiation exposure, 
high cost, relatively long scan times, 
and preprocedural requirements 
such as fasting, tight blood glucose 
control, and avoidance of caffeine, 

alcohol, or drugs that may affect 
cerebral glucose metabolism.30 Stud-
ies are optimally performed during 
the interictal period, requiring the 
patient to be seizure free for at least 
24 hours.31 PET’s ability to precisely 
define the surgical margin is also 
limited, as areas of hypometabolism 
may extend beyond the anatomi-
cal epileptogenic zone.32 Overall, 
standard multimodal imaging has 
been unable to identify a clear cause 
of seizures for one-third of epilepsy 
patients, half of whom are drug resis-
tant.33 Owing to water’s abundance in 
the body, MRI relies heavily on the 
molecule’s protons, which produce 
contrasts based on relaxation rates of 
different gross tissue structures. 

There is great interest in expanding 
the use of novel molecules; however, 
direct detection using a multinuclear 
imaging system is technically chal-
lenging and expensive.34 Magnetic 
resonance spectroscopy (MRS) is a 
technique that allows probing of the 
metabolic environment. Neverthe-
less, the current clinically available 
MRS sequences are limited by long 
acquisition times, low sensitivity, 
poor spectral and spatial resolution, 
and volume voxel overlapping with 
non-targeted tissue.35 

Chemical Exchange Saturation 
Transfer Imaging

Chemical exchange saturation trans-
fer (CEST) is an advanced MR  
imaging technique that addresses 
many limitations of current tech-
niques. CEST takes advantage of proton 
exchange between solutes and water, 
providing an amplification strategy to 
detect metabolites and proteins with 
labile groups by using a frequency- 
selective radiofrequency saturation 
pulse (Figure 1). Saturation is a magnet-
ic resonance state in which the selected 
tissue or, in this case, solute produces 
zero net magnetization or signal. 

During radiofrequency saturation, 
low-concentration solutes with ex-
changeable protons can be selectively 
saturated. Owing to proton exchange, 
this saturation is continuously trans-
ferred to the much more abundant 
water molecules, leading to a propor-
tional signal reduction for water.34,36 
The difference in the water signal 
obtained with and without saturation 
essentially allows indirect detection 
of low-concentration solutes. 

Glutamate is a key excitatory 
transmitter in the brain; however, 
an imbalance can result in seizure 
activity.39 Dysfunctional glutamate 

Figure 1. Overview of CEST. (A) A small concentration of solute exists within the tissue. (B) The solute of choice is selectively saturated with a 
radiofrequency pulse that reduces the signal of the solute (white H). (C) The saturated solute hydrogen (white H) is then exchanged with an 
unsaturated hydrogen from water (yellow H), reducing the overall signal of water. (D) The process is repeated until a measurable water signal reduction 
is reached, indirectly detecting the solute concentration.9
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cycling by glutamine synthetase in 
astrocytes slows glutamate clearance 
and subsequently elevated levels 
of glutamate in the epileptogenic 
hippocampus.40-43 Studies in animals 
and humans demonstrate glutamate’s 
potential to serve as a marker for local-
izing epileptogenic foci. Microdialysis 
studies in human subjects have shown 
increased glutamate concentrations at 
the epileptogenic focus ictally, interic-
tally, and postmortem.41,42,44-47 

Increased glutamate concentration 
has also correlated with decreased 
hippocampal volume on MRI.47 Using 
MRS, Pfund et al found the combined 
glutamate and glutamine signal to be 
increased  in the epileptogenic hippo-
campus of patients with morphologi-
cally nonlesional epilepsy.48 Decreased 
levels in sclerotic hippocampi were 
also noted; however, their observation 
could have been limited by the hip-
pocampal volume loss and relatively 
large voxel size.48 

This result has led to the investiga-
tion of glutamate as a metabolic agent 
for noninvasive imaging to correlate 
and potentially map epileptogenic 
networks using CEST (GluCEST). 

GluCEST has been found to have 
higher spatial resolution and twice 
the sensitivity for glutamate com-
pared with traditional MRS methods.38

GluCEST has already been demon-
strated in healthy subjects and 
Alzheimer disease mouse models.49-52 
Davis et al have utilized GluCEST for 
epileptogenic source lateralization in 
four nonlesional, drug-resistant, epi-
lepsy patients and 11 healthy controls.53 
Using a two-dimensional single-slice 
GluCEST sequence on a 7 Tesla (T) 
MRI, the epileptogenic hippocampus 
was lateralized in all of the epilepsy 
patients, including two right-sided 
and two left-sided temporal epilep-
sy patients (Figure 2).53-55 GluCEST 
findings matched EEG and subsequent 
histopathology results.53 In addition, no 
significant difference in hippocampal 
volume was found between the epilep-
togenic and the contralateral sides. 

Subsequently, Hadar et al applied 
GluCEST to three-dimensional im-
aging and found similar results with 
increased GluCEST signal in the epi-
leptogenic hippocampus,55 and Lucas 
et al found a GluCEST correlation with 
lesional and nonlesional hippocampi.54 

CEST has also been used to distin-
guish the physical signs of tuberous 
sclerosis complex (TSC), a disease 
that affects more than 1 million 
people and is caused by mutations in 
the TSC1 or TSC2 genes.56,57 Neuro-
logical manifestations of TSC include 
seizures, intellectual disability, and 
behavioral problems.56,57 Hamarto-
mas in the brain or tubers, major 
hallmarks of TSC, have been shown 
to correlate with seizure burden.58 
Wen et al were able to utilize CEST 
imaging to differentiate tubers from 
normal brain tissue, with a prob-
able major metabolic contributor 
being glutamate levels.59 In addition, 
CEST showed the potential to reveal 
tubers undetected by conventional 
T2 sequences.59

Challenges and Future 
Directions

Chemical exchange saturation 
transfer imaging provides a more 
sensitive and robust method to de-
tect and measure biological metab-
olites. However, specific resonance 
of the biological metabolites can 

Figure 2. Axial sections from four patients with drug-resistant temporal lobe epilepsy (TLE) showing the increased GluCEST signal in the nonlesional 
epileptogenic hippocampus. (A, B) Right TLE; (C, D) Left TLE. Images courtesy of Davis et al. Reprinted with permission of AAAS.56
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overlap and the CEST signal of two 
biological metabolites may con-
tribute to each other. This includes 
a small contribution of the neu-
rotransmitter gamma-aminobutyric 
acid and creatinine to GluCEST and 
glucose, contributing to glycogen 
detection.38,60 Users must be precise 
and mindful when selecting the 
proper offset. Also, there could be 
concomitant changes not only in 
glutamate concentration but also 
mild pH change.61 

Third, CEST signal magnitude and 
spectral separation are enhanced 
at higher magnetic field strengths, 
requiring many of these studies to 
be performed on 7T scanners.53-55,60 
The need for high field strengths has 
thus far limited the broader research 
and clinical implementation of CEST 
MRI; more research is needed to 
assess the potential of CEST to be 
utilized at lower and more widely 
available magnetic field strengths. 
Standardization and quantifica-
tion across scanners also must be 
improved to allow reliable CEST 
imaging interpretation.62 Methods 
to address this issue are currently 
being explored.63,64

Conclusion
There are multiple diagnostic 

imaging approaches to epilepsy 
imaging, but there is still a sub-
population of treatment-refractory 
epilepsy patients whose lesions 
cannot be detected with convention-
al imaging. CEST provides direct 
interrogation of the metabolic 
composition of biological tissue and 
has been demonstrated to reveal ep-
ileptogenic foci not detectable with 
conventional MRI, including those 
in temporal lobe epilepsy and TSC 
patients. Additional work is needed 
to translate this capability to more 
widely available 3T MRI scanners 
and to standardize CEST acquisition 
and postprocessing. 

Lastly, increased awareness of 
the CEST technique and its potential 

clinical use in epilepsy imaging is 
important as the field increasingly 
incorporates metabolic and precision 
imaging into clinical practice.
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