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Abstract

Purpose: Deep learning can be a powerful tool for automating visual tasks in medical imaging, including the local-
ization and segmentation of anatomic structures. However, training these algorithms often requires substantial data 
curation that may require expert image annotation on multiple imaging planes. For example, the base and apex of 
the prostate may be more readily marked by radiologists in sagittal planes, while segmentation of central and pe-
ripheral zones of the prostate may be more readily handled in axial planes. We thus sought to develop a deep-learn-
ing (DL) strategy capable of integrating annotations across multiple imaging planes and hypothesized that it would 
outperform traditional algorithms developed using single-plane imaging data only. 

Materials and Methods: In this retrospective, IRB-approved, HIPAA-compliant study, we collected pelvic magnetic 
resonance images (MRIs) from 656 male patients. The urinary bladder, prostate, and point locations of the pros-
tate’s apex and base were annotated on sagittal T2 images in 391 patients. Central and peripheral zones of the 
prostate were segmented on axial T2 images in 265 patients. Datasets were then divided by patient into training 
(80%), validation (10%), and test (10%) cohorts.  

Three convolutional neural networks (CNNs) were trained, each based on a U-Net architecture: CNN1 using sagittal 
images to provide heatmap localizations of the apex and base of the prostate, CNN2 using axial images to segment 
the prostate and divide it into central and peripheral zones, and a multitask CNN using both data sets to accomplish 
both tasks. To this end, images and annotations were transformed into a common coordinate system and a custom 
conditional loss function was incorporated to handle missing labels and encode three-dimensional geometric rela-
tionships. Model performance for segmentation and localization was assessed by Dice score and L2 distance error. 

Results: Median Dice for whole prostate segmentation improved from 0.803 (IQR 0.76-0.818) by CNN1 to 0.882 
(IQR, 0.842-0.890) by the multitask CNN (p < 0.05, Wilcoxon test). Mean dice scores for central and peripheral zone 
segmentation were [81.02 ± 5.58, 63.36 ± 3.96%] respectively by CNN2 and [81.02 ± 5.58 %, 61.67 ± 7.04%] by 
the multitask CNN respectively without significant difference. Median L2 errors for localization of the base and apex 
of the prostate decreased from 5.7 (IQR 4.5-6.9) mm and 6.5 (IQR 5.6-7.7) mm by CNN1 to 3.6 (IQR 2.6-4.7) mm 
and 3.5 (IQR 2.4-4.5) mm by the multitask CNN.  

Conclusions:  Our proposed multi-task CNN was capable of learning both segmentation and localization tasks, 
incorporating data from multiple imaging planes, and exceeding the performance of the CNNs trained on individual 
tasks. These results demonstrate the potential of CNNs for tackling related visual tasks and their potential for com-
bining data from multiple sources or imaging planes.
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Introduction 
Medical image segmentation 

involves partitioning an input 
image into different segments and 
aims to delineate the foreground 
anatomical or pathological struc-
tures from the background. Image 
segmentation helps in the analysis 
of medical images by highlighting 
regions of interest, which can be 
used to define anatomic boundar-
ies, for detection of abnormalities 
in computer-assisted diagnosis, 
dose planning for radiotherapy, sur-
gery simulation, and other forms of 
treatment decision-making. 1 

Manual segmentation by a human 
expert might seem like the simplest 
solution to define target boundaries; 
however, it is a time-consuming and 
user-dependent process.2 Because 
it is such a foundational aspect of 
so many biomedical problems, 
segmentation continues to be an 
important area of ongoing research.3 
Deep learning algorithms, and 
specifically convolutional neural 
networks (CNNs), are capable of 
learning and reproducing an ex-
tensive range of parameters, which 
can then be used to extract features 
from medical images. 4,5 

In the last several years, deep 
learning has emerged as a powerful 
tool for automating segmentation 
of anatomic structures in medi-
cal images. Although each CNN 
algorithm is generally developed to 
accomplish a single task, multitask 
CNNs have the potential to be more 
computationally efficient. The 
potential performance benefit of 
multitask CNNs remains unclear, 
though few studies have shown im-
proved performance of multi-task 
algorithms for segmentation and 
classification of breast tumors on 
ultrasound and mammography. 6,7

Image segmentation for prostate 
MRI can be utilized for a variety of 
aspects of medical care, including 

delineation of the gland and zonal 
boundaries for measurements of 
prostatic enlargement, procedural 
planning for prostate biopsies, and 
radiation therapy planning. 8-10 In 
addition, algorithms that locate 
the base and apex of the prostate 
gland can help to delineate the 
prostate gland’s spatial orientation 
for automating MRI scan pre-
scription 11,12 and standardizing 3D 
reconstructions. 

However, as with many tasks in 
medical imaging, certain anatomic 
structures are better delineated in 
one plane than another, partly due 
to anisotropic spatial resolution 
of multiplanar MRI. For example, 
the apex and base of the prostate 
may be more readily delineated in 
the sagittal plane, and the zonal 
boundaries of the prostate may be 
more readily delineated in the axial 
plane. It remains unclear how to 

best combine data from multiple 
imaging planes, and to what degree 
combining such information is ben-
eficial for CNN performance. 

We thus sought to explore the 
potential of a multitask CNN to 
combine multiplanar MR images 
and annotations, and to evaluate 
its performance for accomplishing 
two tasks: 1) dividing the prostate 
into central and peripheral zones, 
leveraging annotations in axial 
sections, and 2) localizing the base 
and apex of the prostate, leveraging 
annotations in sagittal sections. To 
that end, we proposed a strategy in 
which two datasets were aggregated 
by transforming images and anno-
tations into a common coordinate 
system and applying a conditional 
loss function to address missing la-
bels and encode geometric relation-
ships between anatomic structures. 
We hypothesized that this multitask 

DATASET A, SAGITTAL T2-WEIGHTED IMAGES

Spatial Resolution (mm x mm) 0.41 x 0.41

Slice Thickness (mm) 3.2

Magnetic Field Strength (T) 3

Repetition Time (ms) 5320

Echo Time (ms) 133

Field of View (cm x cm) 21 x 21

Acquisition Matrix 312 x 253

Flip Angle 137

Table 1.  MR Imaging acquisition parameters for dataset A.

DATASET B SAGITTAL  
T2-WEIGHTED IMAGES

AXIAL  
T2-WEIGHTED IMAGES

Spatial Resolution (mm x mm) 0.48 x 0.48 0.46 x 0.46

Slice Thickness (mm) 4 3

Magnetic Field Strength (T) 3 3

Repetition Time (ms) 3747 6197

Echo Time (ms) 102 102

Field of View (cm x cm) 25 x 25 24 x 24

Acquisition Matrix 384 x 352 320 x 320

Flip Angle 111 111

Table 2. MR Imaging acquisition parameters for dataset B.
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Figure 1. Flowchart of the proposed multi-task CNN and its tasks relative to the single-task CNNs (CNN1 and CNN2). The proposed CNN is trained 
with a combination of datasets A and B. The component CNNs are trained with the data relevant to their component problems (Dataset A for 
CNN1, Dataset B for CNN2). Dataset A includes sagittal images of 391 patients with urinary bladder, prostate, and prostate’s apex and base 
annotation while dataset B includes axial images of 265 patients with prostate and its peripheral zone annotation. 
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approach would outperform single 
models separately trained for in-
dividual tasks. 

Methods
In this retrospective, IRB-ap-

proved, HIPAA-compliant study, we 
collected a convenience sample of 
pelvic MRIs from 656 male patients 
(mean age 67 years, range 38-87). 
Pelvic MRIs were acquired as part 
of routine clinical care for initial de-
tection, treatment planning, active 
surveillance of prostate cancer, or to 
assess for recurrence in previously 
treated patients with elevated pros-
tate-specific antigen (PSA).

Image Data 
Multiparametric MR imaging of 

the prostate was performed utilizing 
an MR scanner with a pelvic exter-
nal phased-array coil using the same 
standard protocol in accordance 
with recommendations of ACR and 

ESUR. The protocol included two- 
dimensional turbo spin echo (TSE) 
T2 imaging, three-dimensional 
dynamic contrast-enhanced (DCE) 
imaging in three planes, and 
echo-planar diffusion-weighted 
 imaging (DWI). Tables 1 and 2 show 
the MRI acquisition parameters.  

Image Annotation 
Data for this study comprised 

two datasets. Dataset A includ-
ed segmentations of the urinary 
bladder and prostate, and point lo-
calizations of the apex and base of 
the prostate, each annotated on T2 
sagittal images from 391 patients. 
These annotations were per-
formed by a medical student and a 
radiology resident, supervised by 
a board-certified radiologist using 
Arterys (Tempus, USA) software.

 Annotations of the apex and base 
of the prostate were transformed 
from point localizations to Gaussian 
heatmaps. Dataset B included seg-

mentations of the prostate gland and 
its peripheral zone, each annotated 
on T2 axial images from 265 patients. 
These annotations were performed 
by an image analyst and radiology 
postdoctoral fellow, supervised by a 
board-certified radiation oncologist. 
Each dataset was then divided by 
patient into training (80%), validation 
(10%), and test (10%) cohorts.   

Model Training 
Three modified 3D U-Nets were 

developed with multiple output 
channels for segmentation and lo-
calization tasks. CNN1 was trained 
using dataset A and a weighted 
sum of the segmentation and 
localization loss functions. CNN2 
was trained using dataset B and 
the segmentation loss only. Axial 
annotations from dataset B were 
then translated into their sagittal 
equivalent and combined with 
dataset A; this combined dataset 
was used to train the multitask 

Multitasking Neural Networks for Multiplanar MRI Prostate Localization and Segmentation

Table 3. Performance of all three CNNs. The proposed multi-task CNN outperforms CNN1 for segmentation and localization on 
sagittal images and performs comparably to CNN2 for segmentation in axial images. 
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CNN, incorporating a custom 
conditional loss function for seg-
mentation and localization in order 
to 1) ignore missing annotations 
in the combined dataset, and 2) to 
take advantage of the morpholog-
ical relations among the regions 
of interest. Boundary constraints 
included the following: (a) central 
and peripheral zones must sum up 
to the complete prostate gland; (b) 
urinary bladder and prostate seg-
mentations must have no overlap, 
and (c) prostate and base localiza-
tions must overlap with the prostate 
gland segmentation. 

In this work, segmentation loss 
was defined using the Tversky 
index while localization loss was 
based on mean square error. For 
training the single-task CNNs, in-
put images were resampled and ze-
ro-padded to (x, y, z) dimensions of 
256 x 256 x 16. These images were 
preprocessed using histogram 
matching followed by simple im-
age standardization. Augmentation 
in the form of random image crop-
ping (by -10 to 10 pixels), shifting 
(by -20 to 20 pixels), and rotation 
(by -10 to 10 pixels) were applied 
during neural network training. 

Predictions generated by the 
multitask CNN were compared di-
rectly against CNN1 predictions and 
translated back to the axial plane 
for comparison against CNN2. 
Flowchart of the proposed multi-
task CNN and its tasks relative to 
the single-task CNNs (CNN1 and 
CNN2) are shown in Figure 1. 

Statistical Analysis 
Segmentation performance 

was assessed using Dice scores 
(expressed as mean ± SD and/or 
median along with the interquar-
tile range (IQR)).  Localization 
performance was evaluated using 
landmark L2 distance error and 
angulation error, calculated as the 

error between lines connecting 
the apex and base of the prostate. 
Wilcoxon tests were used for com-
parison of Dice scores, L2 distance 
error, and angulation error between 
the evaluated models.  

Results 
Using two different annotated 

datasets, three modified 3D U-Nets 
were trained for segmentation and 
localization tasks on prostate MRI. 
Performance of all three CNNs is 
shown in Table 3.  

Prostate Gland Localization 
Mean L2 distance error for 

localization of the prostate gland’s 
apex and base decreased from 
5.7±1.92 mm and 6.5 ±2.5 mm by 
CNN1 to 3.6 ±1.0 mm and 3.5 ±1.2 
mm by the multitask CNN. Mean 
angulation error decreased from 
14.7±8.6° by CNN1 to 5.9±4.2° 
by the multitask CNN (p-value < 
0.05). Median L2 distance error for 
localization of the apex and base 
of the prostate decreased from 5.7 
mm (IQR 4.5-6.9) and 6.5 mm (IQR 
5.6-7.7) by CNN1 to 3.6 mm (IQR 
2.6-4.7) and 3.5 mm (IQR 2.4-4.5) by 
the multitask CNN. 

Prostate and Urinary Bladder 
Segmentation 

Mean Dice score for prostate 
segmentation improved from 80.30 
± 6.87% by CNN1 to 88.19 ± 4.75% 
by the multitask CNN (p-value < 
0.05). Median Dice score for pros-
tate segmentation improved from 
80.3% (IQR 76.0 - 81.8%) by CNN1 
to 88.2% (IQR 84.2 - 89.0%) by the 
multitask CNN. Mean Dice score 
for bladder segmentation increased 
from 88.00 ± 3.10% by CNN1 to 
92.05 ± 2.65% by the multitask CNN 
(pvalue < 0.01). Median Dice score 
for bladder segmentation improved 

from 88.99% (IQR 83.78 - 89.97%) by 
CNN1 to 91.35% (IQR 89.0-93.2%) 
by the multitask CNN. Our pro-
posed multitask CNN outperformed 
the single-task CNNs in all segmen-
tation tasks.   

Central and Peripheral Zone 
Segmentation 

For central and peripheral 
zone segmentation, there were no 
significant differences between the 
multitask CNN and CNN2 (p-value> 
0.05). The mean Dice score for cen-
tral zone segmentation was 81.02 
± 5.58 % by the multitask CNN and 
81.32 ± 2.55% by CNN2. The mean 
Dice score for peripheral zone seg-
mentation was 61.67 ± 7.04% by the 
multitask CNN and 63.36 ± 3.96% 
by CNN2. Two accessions that il-
lustrate multitask CNN performing 
well are shown in Figure 2.   

Discussion 
Deep learning is a powerful tool 

that can be used for the segmenta-
tion of anatomic structures in medi-
cal imaging, but it typically requires 
substantial training data that can be 
time-consuming to obtain. To assess 
the feasibility of training deep learn-
ing algorithms on smaller datasets, 
we investigated the potential of 
using multiple datasets, annotated 
for different purposes on different 
planes, and aggregated using 3D 
image re-slicing and image-to-image 
physical point translation. This is 
unlike the majority of segmentation 
approaches presented in the litera-
ture which, despite the availability 
of multi-planar MR images in the 
standardized protocols, only take ax-
ial images into account. The merged 
dataset was utilized for training a 
single CNN model, which per-
formed equally well or better than 
individual models trained using a 
single dataset. 

Multitasking Neural Networks for Multiplanar MRI Prostate Localization and Segmentation
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Figure 2. Representative segmentation and localization of the multitask CNN and comparison against ground truth. Example segmentations by 
the proposed CNN in representative patients from dataset A and dataset B The case from dataset A shows high agreement with ground truth 
segmentation: bladder Dice 0.89, prostate Dice 0.86, prostate base localization error of 3.33 mm, and apex localization error of 1.61 mm. The 
case from dataset B shows high agreement with ground truth with prostate Dice 0.89 and central zone Dice 0.86.  

Multitasking Neural Networks for Multiplanar MRI Prostate Localization and Segmentation
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In the present study, our 
proposed multitask CNN outper-
formed the single-task CNNs for 
pinpointing the apex and base of 
the prostate, which can be used to 
define the spatial orientation of the 
prostate gland. This ultimately can 
be used for separate ongoing work 
automating oblique plane pre-
scription in MRI. 

The multitask model improved 
prostate gland and urinary bladder 
segmentation as well as localiza-
tion of the prostate base and apex. 
While the annotations required 
for each task may be more easily 
acquired in the axial imaging plane, 
our proposed CNN model was 
designed to perform all tasks in a 
single common coordinate system, 
utilizing conditional loss functions 
to address missing labels and en-
code geometric relationships. 

The present study is one of the 
first to investigate whether a fully 
automated multitask deep learning 
algorithm can accomplish multiple 
tasks while merging two anno-
tated datasets, and if so, how this 
approach might improve the quality 
of segmentation and localization 
results. The combined model yield-
ed significantly decreased mean L2 
distances and angulation errors for 
localization of the prostate gland 
apex and base by 2.1-3 mm and 
8.8°, respectively. Improvement 
in the automated delineation of 
the prostate gland’s craniocaudal 
orientation can potentially enable 
a faster automated MR imaging 
prescription. The multi-task model 
outperformed each single-task 
model for segmentation of the 
prostate gland and urinary bladder 
boundaries by approximately 8% 
and 4%, respectively, though it did 
not show a statistically significant 
difference in zonal segmentation of 
the prostate gland. 

A number of studies have found 
satisfactory performance of deep 

learning algorithms for prostate 
segmentation at ultrasound and 
mp-MRI. 13,14 In prior investigations 
with datasets of 49 to 163 patients, 
CNN models have obtained Dice 
similarity coefficients ranging 
from 0.85 to 0.93 for the automatic 
segmentation of the prostate gland. 
15-18 A study by Tian, et al,16 applied 
a deep-learning algorithm for 
prostate segmentation on a data set 
of 140 prostate MRIs and yielded a 
Dice similarity coefficient of 0.85. 
The online data collection PROM-
ISE12, which contains labeled 
prostate MR images, has inspired 
many studies of prostate segmen-
tations. 19 The present study stands 
up by employing a larger cohort of 
training datasets, training a multi-
task deep learning algorithm, and 
using multiplanar set of images for 
performing tasks. 

Multi-task training relies on shar-
ing features between related tasks 
to enable the combined model 
to perform better on the original 
single tasks. Training deep learning 
algorithms using small and par-
tially annotated datasets can also 
potentially overcome the lack of 
large training datasets by combin-
ing images previously annotated for 
various purposes on different im-
aging planes, ultimately facilitating 
the increasing automation of image 
analysis tasks. 

Limitations
We recognize several limita-

tions to this study. Our proposed 
multi-task CNN model was trained 
and validated using retrospective 
data, so our imaging data includes 
a variety of different vendors, insti-
tutions, and imaging techniques. 
Further work may be essential to 
ensure comparable results among 
other scanner manufacturers and 
institutional protocols. Failure 
modes of the multitask CNN 

model may be revealed through 
more extensive testing, though 
additional training data would 
likely enhance performance. The 
future direction could focus on 
how well our proposed multitask 
CNN performs among patients who 
have aggressive prostate cancer 
with invasion to seminal vesicles 
or bladder. Further investigation 
is needed to determine how well a 
multitask CNN model will perform 
in post-operative patients. 

Conclusion
In summary, we show that a 

multitasking CNN approach can 
successfully be used to aggregate 
disparate training data developed 
for multiple tasks in multiple imag-
ing planes. Multi-task deep learning 
algorithms that utilize such data 
can outperform component CNNs 
trained only on data for individ-
ual tasks. We believe a similar 
approach may be used to perform 
similar tasks for other organs, pav-
ing the way to use datasets of more 
modest size for image analysis 
of ever-increasing accuracy and 
complexity.                                                               
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