Global Health Care Inequalities of Head and Neck Cancer Imaging and Treatment Protocols Emphasizing PET/CT Availability

Gloria J. Guzmán Pérez-Carrillo, MD, MSc, MPH, MBA

With more than 660,000 new cases and 325,000 deaths annually worldwide, head and neck cancer is the seventh most common cause of global cancer, with a disparate incidence and mortality between low- and middle-income countries (LMICs) and high-income countries (HICs), the latter demonstrating higher incidence but lower mortality.^{1,2}

Moreover, there seems to be an increasing growth of the world cancer burden, with a steep-slope rate in LMICs compared with HICs.³⁻ ⁵ Positron emission tomography / computed tomography (PET/CT) imaging plays a crucial role in enabling the detection, staging, and restaging after treatment of head and neck cancers⁶ and is an essential tool for reducing morbidity and mortality.

However, there are significant discrepancies in availability, cost, and accessibility, particularly in the US compared with LMICs.^{7,8} This, in turn, results in health care

Affiliation: Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri. Disclosures: Dr Guzmán is a speaker for Siemens Healthineers and MRI Online. disparities that negatively impact health outcomes for the LMIC populations.⁹ While the primary driver of health care inequities in access to imaging for head and neck cancers is the number of scanners, such as PET/CT and MRI and the number of radiologists in LMICs, this article discusses other potential factors and strategies to address them.

Specific Health Care Disparities

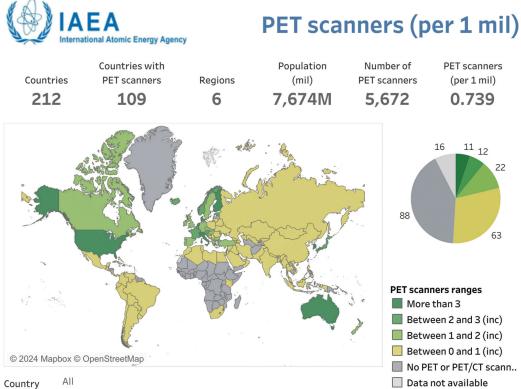
PET/CT Scanners Per Capita

The US and other HICs boast a high number of PET/CT scanners compared with many other lowerincome nations, owing to their extensive health care infrastructure and technological advancements, with an average of 3522 PET scanners per million people (Figure 1).² In contrast, many LMICs struggle with a scarcity of PET/CT scanners, with an average of 301 per million residents for upper-middleincome countries and none at all in most of Africa (Figure 1).² These shortages limit access to this important imaging technology

for a significant portion of the LMIC population, delaying diagnosis and treatment and ultimately compromising patient outcome.²

A direct consequence of this undersupply is that while the incidence of cancer (Figure 2) in Africa (aside from Namibia) is less than or equal to 7.7 while in the US it is 7.7-19.5, the mortality rate in Africa is significantly higher (Figure 3; up to 10.8 in multiple countries in Africa vs 1.2-1.6 in the US).

Radiologists Per Capita


Significantly more radiologists are available to interpret head and neck PET/CT studies in HICs vs LMICs, (Figure 4)² paralleling the availability of PET/CT scanners. For example, in HICs, there are 93 radiologists per million residents compared with as few as 1 radiologist per million in low-income countries. This lack of trained professionals to monitor and interpret these studies limits accessibility to this critical diagnostic imaging tool.

Cost and Socioeconomic Barriers

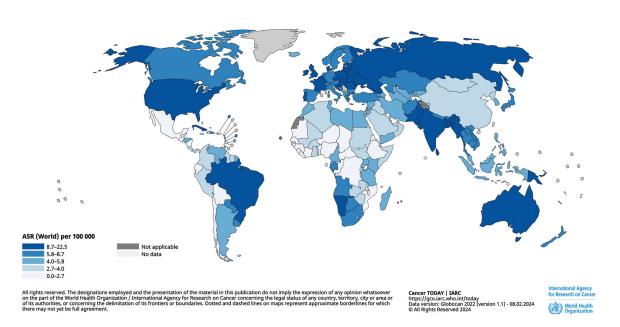
The high cost of PET/CT scans may deter them from seeking necessary

©Anderson Publishing, Ltd. All rights reserved. Reproduction in whole or part without express written permission is strictly prohibited.

Published: August 1, 2024. https://doi.org/10.1016/10.37549/AR-D-24-0006

Figure 1. PET scanners per 1 million residents. Data generated from IAEA IMAGINE.⁶

Income Group


Income Group	Countries	Countries with PET sca	Population (mil)	Number of PET scanners	PET scanners (per 1 mil)
High Income	75	51	1,237M	4,356	3.522
Upper-Middle Income	54	35	2,854M	860	0.301
Lower-Middle Income	50	20	2,913M	451	0.155
Low Income	30	1	669M	3	0.004
Temporary Unclassified	1	1	ОМ	1	2.751

UN Regions

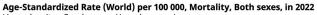

UN Region Name	Countries	Countries with PET sca	Population (mil)	Number of PET scanners	PET scanners (per 1 mil)
Australia/New Zealand	2	2	30M	85	2.807
Central and Southern Asia	14	9	1,993M	390	0.196
Eastern and South-Eastern Asia	19	12	2,298M	1,011	0.440
Europe and Northern America	48	40	1,110M	3,592	3.235
Latin America and the Caribbean	39	20	647M	313	0.484
Northern Africa and Western Asia	25	21	517M	263	0.509
Oceania (excluding Australia and	15	0	12M	0	0.000
Sub-Saharan Africa	49	4	1,066M	17	0.016

Figure 2. The 2022 head and neck cancer global age-standardized incidence rates. The map was generated using the GLOBOCAN website mapping tool (https://gco.iarc.fr/today/online-analysis-map) by selecting "lip, oral cavity," "oropharynx," "hypopharynx," and "larynx" cancers.²

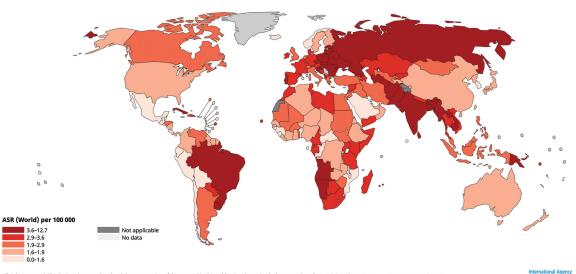


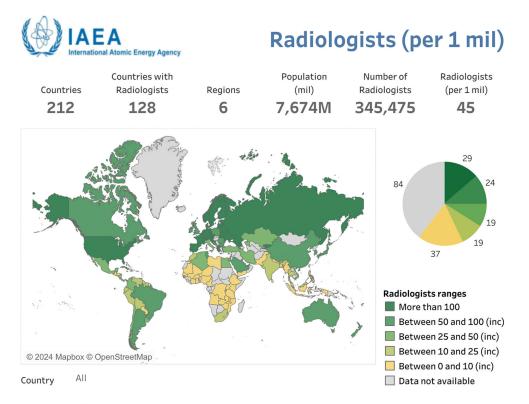
Figure 3. The 2022 head and neck cancer global age-standardized mortality rates. The map was generated using the GLOBOCAN website mapping tool (https://gco.iarc.fr/today/online-analysis-map) by selecting "lip, oral cavity," "oropharynx," "hypopharynx," and "larynx" cancers.²

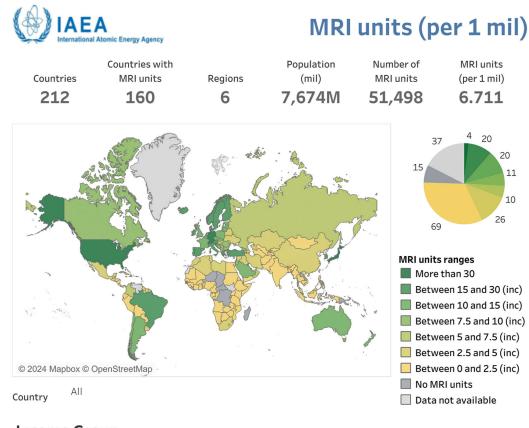
Lip, oral cavity + Oropharynx + Hypopharynx + Larynx

All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoeve on the part of the World Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for which there may not yet be full agreement.

Cancer TODAY | IARC https://gco.iarc.who.int/today Data version: Globocan 2022 (version 1.1) - 08.02.2024 © All Rights Reserved 2024

for Research on Cancer World Health Organization




Figure 4. Radiologists per 1 million residents. Data generated from IAEA IMAGINE.⁶

Income Group

Income Group	Countries	Countries with Radiolo	Population (mil)	Number of Radiologists	Radiologists (per 1 mil)
High Income	75	46	1,237M	114,701	93
Upper-Middle Income	54	38	2,854M	185,172	65
Lower-Middle Income	50	32	2,913M	44,808	15
Low Income	30	12	669M	794	1

UN Regions

UN Region Name	Countries	Countries with Radiologists	Population (mil)	Number of Radiologists	Radiologists (per 1 mil)
Australia/New Zealand	2	2	30M	2,491	82
Central and Southern Asia	14	9	1,993M	27,518	14
Eastern and South-Eastern Asia	19	10	2,298M	140,785	61
Europe and Northern America	48	37	1,110M	129,066	116
Latin America and the Caribbean	39	30	647M	26,723	41
Northern Africa and Western Asia	25	15	517M	16,761	32
Oceania (excluding Australia an	15	0	12M		
Sub-Saharan Africa	49	25	1,066M	2,131	2

Figure 5. MR scanners per 1 million residents. Data generated from IAEA IMAGINE.⁶

Income Group

Income Group	Countries	Countries with MRI uni	Population (mil)	Number of MRI units	MRI units (per 1 mil)
High Income	75	56	1,237M	32,814	26.529
Upper-Middle Income	54	46	2,854M	15,307	5.363
Lower-Middle Income	50	39	2,913M	3,251	1.116
Low Income	30	19	669M	126	0.188

UN Regions

UN Region Name	Countries	Countries with MRI uni	Population (mil)	Number of MRI units	MRI units (per 1 mil)
Australia/New Zealand	2	2	30M	434	14.332
Central and Southern Asia	14	14	1,993M	2,677	1.344
Eastern and South-Eastern Asia	19	13	2,298M	15,137	6.586
Europe and Northern America	48	41	1,110M	24,696	22.243
Latin America and the Caribbean	39	29	647M	5,010	7.741
Northern Africa and Western Asia	25	23	517M	3,207	6.203
Oceania (excluding Australia an	15	2	12M	2	0.167
Sub-Saharan Africa	49	36	1,066M	335	0.314

medical care or force them to choose less-effective diagnostic methods. Lack of universal health care or affordable health insurance is the biggest driver of these limitations for radiological imaging and medicine in general.¹⁰ A review of the literature found that the costs associated with head and neck cancer have only been evaluated in the US¹¹; no peerreviewed English literature articles exploring the global costs of head and neck cancer could be found.

Accessibility and Infrastructure

Accessibility encompasses factors beyond the physical presence of PET/CT scanners and cost, including geographic proximity, referral pathways, and appointment waiting times. Similarly, accessibility issues arise due to inadequate transportation infrastructure and limited health care facilities in remote areas, further exacerbating health inequalities. All of these factors cause health care inequalities.¹²

Strategies to Address Health Care Disparities

Improving Educational Opportunities for Global Radiology Trainees and Faculty

In the US, we have several pathways to provide subspecialized radiological education to our global colleagues, and these programs serve as terrific initiatives that other societies can emulate. For example, the Iberolatinoamerican Society of Diagnostic and Therapeutic Neuroradiology (SILAN is the Spanish acronym) offers scholarships to Latino-American or Spanish neuroradiology fellows to train at US institutions.¹³

The American Society of Neuroradiology (ASNR) has an international neuroradiology teaching program, the Anne G. Osborn ASNR International Outreach Professor Program, which currently operates in Asia, Africa, and Latin America.¹⁴ This program was started by sending neuroradiologists to 5 countries and has now expanded to 9 sites in 8 countries, with plans for future expansion.

Many of the faculty from these programs have formed long-lasting relationships with radiologists and trainees in their host countries.

Research

Although PET/CT is the recognized workhorse in the diagnosis and follow-up of head and neck cancers, other lower-cost imaging options are available, such as multiparametric MRI, including diffusion-weighted imaging.^{6,15,16} Specifically, in the US, a PET/CT may cost \$1564 vs \$956 for an MRI.17 More research is needed to standardize these MR modalities, which is especially urgent and pertinent in the global arena, as MR is more available than PET/CT (Figure 5).⁶ For example, LMICs have 188-5363 MR scanners per million residents, significantly higher than the 0-301 PET/CT scanners per million residents, as detailed in Figure 1.

Access to More Units, Improved Infrastructure, and Better Health Coverage

Governments and health care authorities should prioritize investment in PET/CT imaging infrastructure, particularly in underserved regions and lowresource settings. Addressing these problems may involve expanding existing facilities or establishing new PET/CT centers that are more accesible to remote communities.

Improving insurance coverage or providing universal health care could also help mitigate health care disparities and adverse outcomes arising from lack of access to PET/CT imaging in countries with adequate imaging infrastructure.¹⁸

Conclusion

Health inequalities in PET/CT imaging persist between the US and other HICs and compared with LMICs, driven by disparities in the number of PET/CT scanners, cost, and accessibility. These inequities have profound implications for patient outcomes and contribute to delayed diagnosis and treatment, furthering outcome disparities. Addressing these challenges requires collaborative efforts from policymakers, health care professionals, and community stakeholders to ensure equitable access to PET/CT imaging services for all individuals. US radiologists play a unique role in driving these changes, primarily through educational outreach and novel research tools that may allow lower-cost imaging tools to detect and monitor head and neck cancers.

REFERENCES

1) Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA A Cancer J Clinicians*. 2021;71(3):209-249. doi:10.3322/ caac.21660

2) International Agency for Research on Cancer, World Health Organization. GLOBOCAN website. Accessed February 26, 2024. https://gco.iarc.fr/today/onlineanalysis-map

3) International Agency for Research on Cancer (IARC). Latest global cancer data: cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Press release Lyon, France, December 15, 2020. Accessed February 27, 2024. https://www.iarc.who.int/wp-content/ uploads/2020/12/pr292_E.pdf

4) Hricak H, Ward ZJ, Atun R, et al. Increasing access to imaging for addressing the global cancer epidemic. *Radiology*. 2021;301(3):543-546. doi:10.1148/radiol. 2021211351 5) Gormley M, Creaney G, Schache A, Ingarfield K, Conway DI. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. *Br Dent J*. 2022;233(9):780-786. doi:10.1038/s41415-022-5166-x

6) Guzmán Pérez-Carrillo GJ, Ivanidze J. PET/CT and PET/MR imaging of the posttreatment head and neck: traps and tips. *Neuroimaging Clin N Am.* 2022;32(1):111-132. doi:10.1016/j.nic.2021.09.003

7) International Atomic Agengy (IAEA). IAEA Medical imAGIng and Nuclear mEdicine (IMAGINE). Accessed February 25, 2024. https://humanhealth.iaea.org/ HHW/DBStatistics/IMAGINE.html

8) Gallach M, Mikhail Lette M, Abdel-Wahab M, et al. Addressing global inequities in positron emission tomography-computed tomography (PET-CT) for cancer management: a statistical model to guide strategic planning. *Med Sci Monit.* 2020;26:e926544. doi:10.12659/MSM.926544

9) Corry J, Ng WT, Ma SJ, et al. Disadvantaged subgroups within the global head and neck cancer population: how can we optimize care. *Am Soc Clin Oncol Educ Book*. 2022;42(42):1-10. doi:10.1200/EDBK_359482 10) National Academies of Sciences, Medicine Division, Board on Health Care Services, Committee on Health Care Utilization, & Adults with Disabilities. Health-care utilization as a proxy in disability determination. 2018.

11) Wissinger E, Griebsch I, Lungershausen J, Foster T, Pashos CL. The economic burden of head and neck cancer: a systematic literature review. *Pharmacoeconomics*. 2014;32(9):865-882. doi:10.1007/ s40273-014-0169-3

12) Baeten R, Spasova S, Vanhercke B, Coster S. *Inequalities in Access to Healthcare*. European Commission; 2018.

13) Iberolatinoamerican Society of Diagnostic and Therapeutic Neuroradiology (SILAN). Scholarships. Accessed February 27, 2024. https://www.silan.org/en/scholarships

14) Anne G, American Society of Neuroradiology (ASNR). Osborn ASNR International Outreach Professor Program. Accessed February 27, 2024. https://www.asnr.org/international-collaboration/anne-g-osborn-asnr-international-outreach-professor-program/ 15) Driessen JP, van Kempen PMW, van der Heijden GJ, et al. Diffusion-weighted imaging in head and neck squamous cell carcinomas: a systematic review. *Head Neck*. 2015;37(3):440-448. doi:10.1002/hed.23575

16) Martin O, Schaarschmidt BM, Kirchner J, et al. PET/MRI versus PET/CT for whole-body staging: results from a single-center observational study on 1,003 sequential examinations. *J Nucl Med*. 2020;61(8):1131-1136. doi:10.2967/ jnumed.119.233940

17) Burian E, Palla B, Callahan N, et al. Comparison of CT, MRI, and F-18 FDG PET/CT for initial N-staging of oral squamous cell carcinoma: a cost-effectiveness analysis. *Eur J Nucl Med Mol Imaging*. 2022;49(11):3870-3877. doi:10.1007/ s00259-022-05843-4

18) Institute of Medicine (US) Committee on the Consequences of Uninsurance. *Care Without Coverage: Too Little, Too Late.* National Academies Press (US); 2002. https:// www.ncbi.nlm.nih.gov/books/NBK220636/