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Abstract
Objective Peer review is an essential part of the patient treatment process that examines and, where necessary, recommends
revisions to clinical data, therapeutic parameters, and potential alternative approaches to treatment. Our hypothesis is that
artificial intelligence (AI) and machine language technologies can enhance peer-review efficacy by screening cases for potential
treatment interruptions caused by re-planning and treatment cessation.

Materials and Methods Fifty-five features of clinical and therapeutic parameters from 3881 radiotherapy patients (7142 plans)
treated from 2014 to 2021 were used as input for two AI models: a multivariable least absolute shrinkage and selection
operator (LASSO) logistic regression model and a pattern recognition feed-forward neural network (NN). The dataset was split
into 70% training and 30% testing, with the training set divided into five groups for cross-validation. Analysis was performed
on the full cohort and on subsets based on treatment site. Performance metrics of accuracy, sensitivity, and specificity
were calculated.

Results Overall, 8.1% of all cases had treatment interruptions, most commonly in the head and neck region compared to
other sites (19% vs 6%-9%, P<.01). For the LASSO model, test set sensitivity, specificity, and accuracy ranged from 37%-70%,
59%-78%, and 60%-76%, respectively, with higher specificity than sensitivity for site subsets. For the NN model, test set
sensitivity, specificity, and accuracy ranged from 41%-68%, 53%-79%, and 53%-78%, respectively. Both models demonstrated
the highest accuracy in the brain subset. For the full cohort, NN accuracy (58%) was similar to LASSO (60%). The largest
accuracy differences between LASSO and NN were in the lung/breast/chest (LASSO: 71% vs NN: 57%) and spine/extremity
(LASSO: 66% vs NN: 54%) subsets.

Conclusion Our results provide proof-of-concept that AI- and ML-based technologies have potential as screening tools to aid
peer review in radiation oncology. Early identification of patients at risk for radiation therapy interruptions using these tools
could translate into higher treatment completion rates. The study is being continued to include more clinical features and to
optimize model hyperparameters.
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Introduction
Peer review in radiation oncol-

ogy is essential for the safe
and efficient delivery of radiation
treatments;1 however, little guidance
and limited research exist regard-
ing the frequency, mechanisms,
and metrics of peer review from
professional organizations.1-4 Peer
review addresses patient charac-
teristics and clinical oncological
information, planned radiothera-
peutic parameters, and potential
treatment-related variations. In a
report series commissioned by
the American Society for Radia-
tion Oncology, seven main items
are currently examined by peer
reviewers.1 These are (1) the decision
to include radiation as part of
treatment, (2) the general radiation
treatment approach, (3) the target
definition, (4) normal tissue image
segmentation, (5) the planning
directive, (6) technical plan quality,
and (7) treatment delivery.

Many of these factors are
indicative of cases requiring re-plans
or cases that may have treatment
interruptions. Although peer reviews
should be conducted prior to the
start of treatment to ensure safety
and quality, they are typically
performed either immediately
before or after treatment has
begun. Thus, there is minimal
time to adjust therapy based
on the recommendations of peer
reviewers. Plan changes based
on peer review discussions are
not uncommon. Hoopes et al
reported that 90% of physicians
have changed their radiation plans
because of peer review.3 Other
studies have shown that up to 10%
of cases have been recommended
for plan modifications based
on peer review.1,3 Studies have
also demonstrated that prolonged
radiation treatment times, for
various reasons, correlated with

reduced local disease control and
worse overall survival.5-7 Therefore,
timely, efficient peer review
may greatly improve treatment
quality and, ultimately, enhance
patient safety.

However, peer review has some
practical difficulties, especially when
the process must be coordinated
among multiple facilities. While
a fully integrated approach holds
promise for improving the quality,
safety, and value of cancer
care, in reality, the process is
often disjointed owing to differing
provider schedules, caseloads, and
expertise. These opportunities to
optimize peer review are further
highlighted by the fact that
different approaches are taken by
academic centers and community
cancer centers operating within the
same network.8 Practically speaking,
however, caseload, time, department
resources, staffing, and increasing
complexity in treatment techniques
limit thorough peer review.9 Thus,
detecting cases that may experience
treatment interruptions due to
undesirable effects is not easy.

A pan-Canadian survey by Caissie
et al demonstrated that barriers
to peer review, including time
constraints (27%) and radiation
oncologist availability (34%), caused
half of all programs surveyed
to conduct peer review after the
start of treatment.10 Therefore,
automating peer review, even if
only partially, may significantly
streamline the process.

Artificial intelligence (AI) tools
can potentially be used to assist
in peer review. Studies have used
machine learning (ML) techniques
to identify high-risk patients for
detailed clinical evaluation during
radiation and chemoradiation.11

To identify potential treatment
interruptions or unusual side
effects resulting from suboptimal
treatment plans, we hypothesize that

complex, nonlinear relationships
exist between different variables,
including clinical characteristics and
plan parameters. Our approach was
to use AI and ML to uncover complex
interactions among variables and to
supplement clinical knowledge with
treatment and plan parameters. By
using AI, our intent was to screen
treatment plans for clinical and
radiotherapeutic factors that could
lead to treatment interruptions or
toxicity and submit the plans for
more detailed inspection to help
expedite peer review.

Methods and Materials

Data Collection

This retrospective study was
approved by the Institutional Review
Board. Clinical data and radiation
therapy plan parameters from
3881 patient records (7142 plans)
were retrospectively extracted from
electronic medical records and
treatment planning systems from
January 2014 to March 2021 for
patients older than 18 years. The
study inclusion criteria consisted of
patients who received external beam
photon radiation therapy with either
curative or palliative intent for initial
treatment and/or re-treatment.
This study excluded patients
who underwent brachytherapy and
electron therapy. Included patients
were further divided into subsets
based on bodily treatment sites
(Table 1). Comparisons were made
using two-tailed t tests with
unequal variance.

The aim of this study was to
identify patients likely to experience
treatment interruptions (eg, changes
in target volume, changes in
prescription dose) or complications
(eg, toxicity). As a surrogate for
this outcome, plans with treatment
interruptions (remaining fractions)
were designated as abnormal cases,
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whereas radiation therapy plans
with no remaining fractions (ie,
no interruptions) were considered
to be normal cases. We defined
remaining fractions as any plan
that was not completed; we did
not separate re-planned cases versus
discontinued cases.

Most interruptions are the result
of toxicity or treatment response
based on radiosensitivity and tumor
histology. This surrogate, although
imperfect, was easily translated
into an instance that could be
extracted automatically from the
patient records. We note that the
specific reason(s) for treatment
interruption were not included in
this study, as our intention was to
identify potential cases and prevent
treatment modification. Various
clinical factors and therapeutic
technical parameters were collected
for logistic regression analysis and
developing neural network (NN)
models. The input factors are listed
in Table 2.

Predictive Modeling

The two classification models
used in this study were a
multivariable logistic regression
with least absolute shrinkage and
selection operator (LASSO) and a
pattern recognition feed forward
NN. For LASSO, the maximum

number of non-zero coefficients
was set to 10. The NN model had
one hidden layer with 10 neurons,
and the weights were initialized
with random seeds. The scaled
conjugate gradient algorithm was
used for training, and the mean
absolute error was the cost function.
Regularization was performed using
error weights to prevent overfitting
of the NN model due to the
unbalanced dataset; entry samples
with treatment interruptions had
two times the weight of those
without treatment interruption
for training.

For both techniques, the dataset
was first split into a 70% training
set and a 30% testing set.
The training set was normalized
with z-score normalization, with
the same center and standard
deviation normalization applied
to the testing set. The training
set was further divided into
five folds for cross-validation.
Within each cross-validation, the
minority class was oversampled
using adaptive synthetic sampling.12

The validation fold was not
oversampled. The testing set was
not oversampled or included in
the training of the algorithms.
The number of input features
to each model was 55. MATLAB
(2022a, The MathWorks, Inc., Natick

Massachusetts, United States) was
used for development, training, and
evaluation of both models.

Predictive Performance
Evaluation

The full cohort and subsets
were analyzed based on treatment
site. The optimal operating point
threshold of the receiver-operating
characteristic curve was determined
only from the training set. This
same threshold was applied to
the validation and testing sets.
Sensitivity, specificity, and accuracy
were calculated. The model with the
greatest validation accuracy across
the five-fold cross-validation was
used to predict the independent
testing set to assess predictive
performance. Comparisons were
made using two-tailed paired t tests.

RESULTS
Description of Cohort

A total of 3881 patients with 7142
plans made up the full cohort. Of
the cohort, 58.1% were between
50 and 74 years, 33.1% were >75
years, and 8.8% were between 19
and 49 years. There were more
females than males (59.6% vs 40.4%).
The most common treatment sites
were the breasts (30.2%), brain
(18.0%), and lungs (13.0%). Most
patients were treated with primary
definitive intent (74.6%) versus
treatment of metastatic disease
(25.4%). Table 1 summarizes the
study cohort. As shown, 8.1% of
all plans experienced treatment
interruptions. The head-and-neck
subset had the largest percentage
of treatment interruptions (18.8%),
while the other subsets ranged from
6.3% to 9.4% (P < .01).

Testing Set Breakdown

The model with the highest
accuracy from the five-fold cross-
validation was selected as the

Table 1. Distribution of Plans With and Without Treatment Interruptions
Across Separate Subset Groups. “All” Indicates the Full Cohort Before
Separated into Subsets Based on Treatment Site

TREATMENT SITE TOTAL NUMBER OF
PLANS

PLANS WITH TREATMENT
INTERRUPTIONS

PLANS WITHOUT TREATMENT
INTERRUPTIONS

All 7142 579 (8.1%) 6563 (91.9%)

Lung, breast, and

chest

3329 228 (6.8%) 3101 (93.2%)

Pelvis and prostate 1077 90 (8.4%) 987 (91.6%)

Spine and

extremity

983 92 (9.4%) 891 (90.6%)

Brain 1285 81 (6.3%) 1204 (93.7%)

Head and neck 468 88 (18.8%) 380 (81.2%)
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predictive model on an independent
testing set. The breakdown of
plans with and without treatment
interruptions in the selected folds
are shown in Table 3. If the same
fold was selected for the LASSO
and NN models, the split was the
same for training and validation
sets. If a different fold was selected,
the number of positive samples
may be slightly different, owing to
randomization during the splitting
process. For the testing set, the split

was the same for LASSO and NN
because this was a hold-out set and
not involved in the training process.

LASSO Performance

The performance metrics for the
LASSO model are shown in Figure 1
and Supplemental Table A
(www.appliedradiationoncology.
com). For the training set, the
average sensitivity, specificity, and
accuracy ranged from 69% to 92%,
52% to 67%, and 67% to 79%,

respectively. Sensitivity was
significantly higher than specificity
for the full cohort, the spine/
extremity subset, and the brain
subset (P<.05). For the validation set,
the average sensitivity, specificity,
and accuracy ranged from 42% to
82%, 49% to 64%, and 51% to 64%,
respectively. Sensitivity remained
significantly higher than specificity
only for the full cohort (P<.05).

For the independent testing set,
the sensitivity, specificity, and
accuracy ranged from 37% to 70%,
59% to 78%, and 60% to 76%,
respectively. Except for the full
cohort, specificity was higher than
sensitivity. The brain subset had the
highest accuracy (76.1%). Overall,
the higher specificity than sensitivity
on the independent testing set
indicated that the model was better
able to predict true negatives (those
without treatment interruptions)
than true positives (those with
treatment interruptions).

For the LASSO model, Table 4
shows the features selected by the
algorithm for the prediction, which
included the components of clinical
features and plan parameters.

Neural Network Performance

The performance metrics for the
NN model are shown in Figure 2 and
Supplemental Table B
(www.appliedradiationoncology.
com). For the training set, the
average sensitivity, specificity, and
accuracy ranged from 79% to 99%,
34% to 68%, and 59% to 83%,
respectively. Sensitivity was
significantly higher than specificity
(P<.05) for all subsets except the
pelvis/prostate subset (P=.15). For
the validation set, average
sensitivity, specificity, and accuracy
ranged from 53% to 77%, 35% to
68%, and 38% to 67%, respectively.
We observed a similar trend in the
validation set as in the training set;
sensitivity in the validation set was
generally higher than specificity,

Table 2. Input Features for the LASSO and NN Models

CLINICAL FEATURES PLAN PARAMETER FEATURES

Patient sex (male, female) Number of beams

Patient age group in years ( ≥75, 50-74,19-49) Type of plan (IMRT, RapidArc, other)

Site Monitor units (total, average, minimum,
maximum)

Primary or metastasis Source to skin distance (SSD; average,
minimum, maximum)

Inpatient status Table tolerance

Personal history of cancer Gantry angle (minimum, maximum)

Family history of cancer Bolus

Tobacco use Gating

Smoker Collimator angle (average, minimum,
maximum)

Second hand smoke Couch lateral (maximum)

Obesity Couch longitudinal (maximum)

Alcohol Couch vertical (maximum)

Human papillomavirus (HPV) Couch angle (average, minimum,
maximum)

Immunosuppression Field size (average, minimum, maximum)

Immunodeficiency Isocenter (X, Y, Z)

Neutropenia Maximum beam energy

Anemia Dose per fraction

Human immunodeficiency virus (HIV)

Hepatitis

Heart disease

Diabetes

Hypertension

Hyperlipidemia

Failure to thrive

Abbreviations: LASSO, least absolute shrinkage and selection operator; NN, neural network; IMRT,
intensity-modulated radiation therapy.
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although it was only statistically
significant in the spine/extremity
subset (P<.05). For the testing set, the
sensitivity, specificity, and accuracy
ranged from 41% to 68%, 53% to
79%, and 53% to 78%, respectively.
Overall, accuracy was highest in the
brain subset (78%).

DISCUSSION
These study results provide proof

of concept that AI can be a
reliable screening tool in the peer
review process to help identify cases
early on that may cause treatment
interruption or major changes in
treatment course. We found that
logistic regression and NN-based
models had some predictive power
in recognizing cases that would
experience treatment interruptions.
This could be useful in identifying
cases that will require a replan for
various reasons, such as a patient
who experiences toxicity or has a
dramatic change in target volume.
Cases identified as “high risk” for
interruptions could be highlighted
in peer review for a more in-
depth evaluation.

Our study demonstrates the
potential of AI in radiation oncology
peer review to prospectively identify
treatment interruption. A simple
example of one potential software
display in a peer-review setting
is shown in Figure 3. Each
patient could be assigned a
“score” associated with treatment
interruption risk that could help
prioritize cases for discussion. The
software might also display the
clinical or plan features flagged for
that specific case. Links directly to
the plan and other relevant clinical
documents could facilitate quick
reference during discussions.

In radiation oncology, every
patient receives a personalized plan
chosen by their physician that best
fits their characteristics, such as
their diagnosis and performance
status. However, for reasons that
are sometimes unknown, a patient
may require a change or break in
treatment, which can be detrimental
to their oncologic outcome. In
patients with head-and-neck cancer,
the hazard rate of death increased
4.2% for each additional day
needed to finish radiation therapy

beyond 8 weeks.13 Even small
disruptions in radiation therapy
can have negative consequences in
gynecologic patients. Lanciano et al
reported a 7.7% reduction in 4-year
survival when the radiation therapy
course was >10 weeks compared with
8.0-9.9 weeks.7

The outcome analyzed in our
study was based on whether or
not a plan had remaining fractions.
Although remaining fractions are
not always indicative of treatment
toxicity, they could be a major
contributor. Several studies have
looked at the ability of ML models to
predict toxicity using clinical and dose
factors and/or radiomic features.14,15

Reddy et al used random forest,
gradient-boosted decision tree, and
logistic regression models with input
of clinical and treatment variables
to predict breast cancer treatment
toxicity and achieved an area under
the curve (AUC) ranging from 0.56
to 0.85.16 Das et al created a fusion
of different non-linear multivariate
models (decision trees, NNs, support
vector machines, and self-organizing
maps) with input of dose and
non-dose patient variables to predict

Table 3. Distribution of Plans With and Without Treatment Interruptions Across Separate Subset Groups from
the Selected Cross-Validation Fold With the Highest Validation Set Sensitivity. Numbers Shown Indicate the
Number of Plans With Treatment Interruptions Divided by the Total Number of Plans. “All” Indicates the Full
Cohort Before Separated into Subsets Based on Treatment Site

TRAINING SET VALIDATION SET TESTING SET

LASSO NN LASSO NN LASSO NN

All 315/3999 (7.9%) 297/3999 (7.4%) 76/1001 (7.6%) 94/1001 (9.4%) 188/2142 (8.8%) 188/2142 (8.8%)

Lung, breast,
and chest

129/1864 (6.9%) 141/1864 (7.6%) 42/467 (9.0%) 30/467 (6.4%) 57/998 (5.7%) 57/998 (5.7%)

Pelvis and
prostate

50/603 (8.3%) 51/604 (8.4%) 13/152 (8.6%) 12/151 (7.9%) 27/322 (8.4%) 27/322 (8.4%)

Spine and
extremity

56/550 (10.2%) 56/550 (10.2%) 11/139 (7.9%) 11/139 (7.9%) 25/294 (8.5%) 25/294 (8.5%)

Brain 32/719 (4.5%) 32/719 (4.5%) 13/181 (7.2%) 13/181 (7.2%) 36/385 (9.4%) 36/385 (9.4%)

Head and
neck

47/262 (17.9%) 50/262 (19.1%) 14/67 (20.9%) 11/67 (16.4%) 27/139 (19.4%) 27/139 (19.4%)

Abbreviations: LASSO, least absolute shrinkage and selection operator; NN, neural network
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Figure 1. Predictive performance of the least absolute shrinkage and selection operator (LASSO) model for (A) training, (B) validation,
and (C) testing datasets. For the training and validation datasets, it is the average across five-fold cross-validation. “All” indicates the
full cohort before separation into subsets based on treatment site and error bars indicate standard deviation.

A

B

C
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radiation-induced pneumonitis in
lung cancer patients with an AUC
of 0.79.17

The test set accuracy in our
study ranged from 57% to 71%
for the lung/breast/chest subset.
We grouped lung and breast into
the same subset due to data size
limitations; thus, the predictive
accuracy of our models may be
improved by further separation.

Similar to their study on breast
cancer patients, Reddy et al used
random forest, gradient-boosted
decision tree, and logistic regression
models with clinical and treatment
parameters to predict head-and-
neck cancer treatment toxicity and
achieved an AUC of 0.64-0.76 in their
validation set.18 Jiang et al used three
supervised learning methods (ridge
logistic regression, lasso logistic
regression, and random forest) to
predict xerostomia, resulting in an
AUC of 0.7.19

Our head-and-neck subset came in
lower at 53%-61% test set accuracy.
We did not directly analyze toxicity
because we predicted whether there
were remaining fractions in each
plan. Remaining fractions could also
be caused by re-planning owing to
tumor shrinkage; this may explain
the reduced predictive value of our
study compared to others looking
solely at toxicity. Carrara et al
applied the artificial NN approach
with five input variables relating to
patient dose, history, and therapy
to predict toxicity after high-dose
prostate cancer radiation therapy,
achieving an AUC of 0.78.20 Pella et
al used support vector machines and
neural network-based algorithms
to predict acute toxicity of the
bladder and rectum due to prostate
irradiation, resulting in overall
accuracy similar in both models at
an AUC of 0.7.21 The accuracy of
our testing set in the prostate/pelvis
subset, at 71%-75%, is similar.

Table 4. Features Selected by Logistic Regression Least Absolute
Shrinkage and Selection Operator (LASSO) Model for Each Subset
Group. “All” Indicates the Full Cohort Before Separation into
Subsets Based on Treatment Site. Isocenter Location X, Y, and Z
Refer to Lateral, Anterior/Posterior, and Superior/Inferior Directions,
Respectively

SITE CLINICAL FEATURES PLAN FEATURES

All • Sex

• Inpatient status

• Personal history of cancer

• Monitor units (max)

• Source to skin distance (max)

• Gating

• Collimator rotation (max)

• Field size (average)

• Field size (max)

• Dose per fraction

Lung, breast and

chest

• Inpatient status

• Personal history of cancer

• Type of plan

• Monitor units (average)

• Source to skin distance (average)

• Source to skin distance (max)

• Bolus

• Gating

• Field size (min)

• Field size (max)

Pelvis and prostate • Anemia

• Diabetes

• Type of plan

• Couch longitudinal (max)

• Field size (max)

• Dose per fraction

Spine and extremity • Patient age group

• Inpatient status

• Tobacco

• Monitor units (total)

• Source to skin distance (min)

• Couch longitudinal (max)

• Field size (max)

• Isocenter (X)

• Energy (max)

• Dose per fraction

Brain • Inpatient status

• Immunosuppression

• Anemia

• Monitor units (average)

• Tolerance table

• Gantry angle (max)

• Bolus

• Couch vertical (max)

• Isocenter (Z)

• Dose per fraction

Head and neck • Patient age group

• Inpatient status

• Tobacco

• Obesity

• Hypertension

• Monitor units (average)

• Monitor units (min)

• Tolerance table

• Field size (average)
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Figure 2. Predictive performance of the neural network (NN) model for (A) training set, (B) validation set, and (C) testing set. For the
training and validation sets, it is the average across five-fold cross-validation. “All” indicates the full cohort before separation into
subsets based on treatment site and error bars indicate standard deviation.

A

B

C
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Although toxicity is one cause of
treatment interruption, physician
input/suggestions can also cause
interruptions if the case is not
presented before treatment and/or
some information is not assessed
during peer review. The traditional
approach to peer review is based on
“chart rounds,” where the physicians,
physicists, dosimetrists, and
therapists review details of each case
(eg, clinical history, treatment
technique, prescription dose,
treatment plan, and patient setup).
The average amount of time spent on
each patient during peer review was
reported to range between 1 and
4 minutes.2,22

Therefore, reviewing the more
technical aspects of treatment
delivery (eg, monitor units and couch/
collimator/gantry parameters), which
may provide additional information,
may not be feasible owing to time
constraints. As demonstrated by our
study, subtle, complex relationships
within/between clinical data and plan

parameters may influence successful
treatment delivery. AI and ML
have the potential to identify and
analyze these relationships for peer
review.23 Similar to the goals of
many AI-driven studies, ours is not
to replace humans with AI but
instead to offer providers additional
tools to enhance the process. These
can supplement clinical intuition
and deepen our understanding
of factors that previously might
go unanticipated.

Since time is a limited resource,
AI/ML can also help to identify and
prioritize cases that require more
time for discussion. Ultimately, these
technologies could improve patient
safety and treatment outcomes.

Our study offers a concept that
can be used to better identify
charts requiring more in-depth
review. Many software tools for
peer review or chart checking take
“rule-based” approaches, meaning
that the parameter being flagged
will need to be predefined with

a range or value.24 Azmandian et
al used clustering techniques for
outlier detection based on treatment
parameters in four-field box prostate
plans; this study helped to detect
plan abnormalities without using the
rule-based approach.25 Kalet et al
developed a Bayesian network model
using clinical and plan parameters
to detect errors in radiation therapy
plans. Their model utilized a clinical
layer (eg, morphology or tumor
type), a prescription layer (eg, total
dose, dose per fraction, technique),
and a treatment layer (eg, monitor
unit per fraction, number of beams,
beam energy). Their study achieved
an AUC of 0.88, 0.98, and 0.89 for the
lung, brain, and breast cancer error
detection networks, respectively.26

Similar to our study, Kalet et al found
the highest testing set accuracy in
the brain subset.

Luk et al also used a Bayesian
model incorporating prescription,
plan, setup, and diagnostic
parameters to detect chart review

Figure 3. An example of an application interface that can be displayed during peer review. The application incorporates the risk of
treatment interruption score, highlighting features flagged for review and quick access links to patient data.
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errors. The AUC for this study
ranged from 0.82 to 0.89.27 Our
testing set accuracy is lower than
these other studies, possibly because
our cohort included not only
“abnormal” cases from a chart-
checking perspective but also cases
with toxicity-related interruptions.

Although the sensitivity and
specificity of our models are relatively
low, there are multiple ways in which
we can improve these metrics of our
study. First, while our study specified
remaining fractions as a surrogate for
cases likely to experience treatment
interruption or complications,
remaining fractions can result from
reasons unrelated to treatment.
Our definition of treatment
interruptions as remaining fractions
includes patients whose treatments
were re-planned and those who
discontinued treatment. Separating
these cases into two cohorts could
improve model predictability.

Second, we grouped subsets
based on treatment site, but
further dividing them into more
focused groups may improve model
predictability, eg, separating pelvic
plans based on whether they include
pelvic lymph nodes or separating
spine plans based on vertebral level.
Overall, model performance and
rigor are expected to improve with
increased curation of the dataset and
additional clinical factors, including
dosimetric plan and structure
set data. Additionally, introducing
socioeconomic and personal factors,
which are commonly seen as causes
of treatment interruptions, could
improve our models.

Future study directions can also
include optimizing hyperparameters
and layer structures for the NN.
Alternative techniques for data
re-balancing or using convolutional
NNs for deep learning could also
be investigated. A weakness of

this study is that it does not
include brachytherapy, electron
therapy, other treatment sites, or
pediatric populations. To address
this issue, we are continuing the
study with brachytherapy, electrons,
and pediatric populations, as well
as including additional, more
robust parameters.

A known limitation of NNs
is their difficulty in identifying
the single feature that contributes
most to the model, given the
complexity of their relationships
and the numerous weights/biases
assigned to them. Future studies
can explore a technique to uncover
those features selected by the NN
deemed to be most important
to the predictive task. At the
current stage of our model, which
demonstrates moderate predictive
performance, making conclusions
about or connecting a specific
result and/or feature to a reason
for a predicted interruption
is difficult. Improvements in
model performance should enable
exploration of more advanced,
explainable-AI techniques.

Another current focus of AI and
ML is on treatment planning.23

For example, AI is being used
to adapt treatment plans in real
time to match the day-to-day
variations in patient anatomy,
thereby reducing interruptions
caused by re-simulation and/or
discussion manual re-planning.28

As the technology for adaptive
planning becomes more widely
available, our model will likely need
additional training to keep up with
technological advancements. Future
studies may focus on sites where
adaptive planning is often beneficial
or necessary, such as the head and
neck owing to tumor progression
or treatment response. The ability
to predict cases requiring adaptive

planning due to tumor change can
allow the care team to anticipate and
minimize treatment breaks.

CONCLUSIONS
Our study demonstrated the ability

of AI and ML models to predict
major changes in patient treatment,
including re-planning and radiation
therapy cessation. The findings point
to the promising capability of AI
and ML to augment peer review
and encourage further studies in this
aspect of radiation oncology.
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