
DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

1

RESEARCH PARTNER SPOTLIGHT

 THE DZONE GUIDE TO

Automated
Testing
Improving Application Speed & Quality

 VOLUME I

RESEARCH PARTNER SPOTLIGHT



DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

DZONE.COM/GUIDES DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

2

BY G . RYAN SPAIN
PRODUCTION COORDINATOR, DZONE

DEMOGRAPHICS
434 software professionals completed DZone’s 

2017 Automated Testing survey. Respondent 

demographics are as follows:

 • 41% of respondents identify as developers  

or engineers, and 27% identify as developer 

team leads.

 • The average respondent has 14 years of 

experience as an IT professional. 56% of 

respondents have 10 years of experience 

or more; 21% have 20 years or more.

 • 40% of respondents work at companies 

headquartered in Europe; 34% work in 

companies headquartered in North America.

 • 18% of respondents work at organizations 

with more than 10,000 employees; 20% work 

at organizations between 1,000 and 10,000 

employees; and 28% work at organizations 

between 100 and 1,000 employees.

 •  83% develop web applications or services; 49% 

develop enterprise business apps; and 36% 

develop native mobile applications.

AUTOMATED TESTING
We asked survey respondents which tests in their 

organization’s pipeline(s) are automated and which tests 

are performed manually. The most popular automated 

tests were integration (61%), component (58%), and 

performance (56%). While 22% of respondents automate 

none of these tests, 17% automate one of the three, 25% 

automate two, and 36% of respondents automate all three. 

For manual testing, the most common responses were 

user acceptance (78%), usability (70%), and story-level tests 

(63%). Across all manual and automated testing, manual 

testing had 36% more responses than automated testing. 

We also asked about a wide array of tools for automated 

testing. The most popular tools amongst our respondents 

were JUnit (61%), Selenium (46%), JMeter (45%), SoapUI 

(29%), and Cucumber (21%). 44% of respondents say their 

organization’s Continuous Integration processes extend 

into an automated Continuous Delivery pipeline from 

code check-in to production deployment.

DEVOPS TRENDS
It’s no surprise that automated testing and other DevOps 

practices go hand in hand. 49% of respondents working 

  Does your organization have a dedicated 
DevOps team?

  Does your organization have either push-button 
or automated deployments?

0

10

20

30

40

50

49 30 51 39 51 39

Automates 
integration testing

Automates 
component testing

Automates 
performance testing

Dedicated DevOps Team No Dedicated DevOps Team

0

10

20

30

40

50

51 28 53 28 50 32

Push-Button/Automated
Deployments

No Push-Button/Automated
Deployments

Automates 
integration testing

Automates 
component testing

Automates 
performance testing

Key
Research 
Findings



DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

3

RESEARCH PARTNER SPOTLIGHT

at organizations with dedicated DevOps teams said one 

of that team’s goals was introducing automation across 

the entire SDLC. Looking at the three most popularly 

automated tests, we found that respondents who said 

their organization automated these were much more 

likely to have one of these dedicated DevOps teams. 49% 

of respondents whose org automates integration tests 

said they have a DevOps team, as opposed to 30% who 

said their org does not automate integration tests. For 

component tests and performance tests, the difference 

was 51% with dedicated DevOps teams compared to 

29% of respondents at orgs not automating these tests. 

Respondents answering that these tests are automated 

were also much more likely to say their organization 

performs push-button or automated deployments; for 

example, for integration tests, this difference was 51% 

vs. 28%. These respondents were also significantly more 

likely to believe their organization has fully achieved 

Continuous Delivery.

TOOLS AND AUTOMATED TESTING
Responses regarding the most popular testing tools were 

also connected with these commonly automated tests. 

70% of respondents whose organization uses JUnit said 

they automate integration tests, compared to 46% of non-

JUnit users. For JMeter this difference was 75% vs. 50%, 

and for Selenium it was 77% vs. 47%. These trends apply to 

component and performance testing as well. Performance 

tests, while not as dramatically different as the others 

for users of JUnit and Selenium, were automated by 71% 

of JMeter-users, vs. 43% of non-users. Considering it was 

more likely for respondents to automate more than one of 

these popular tests, even starting test automation in one 

area seems to have an impact on other tests.

TOOLS AND LANGUAGES
Given how language-specific testing tools are, the 

popularity of JUnit and JMeter amongst our respondents 

makes sense. 86% of respondents work at an organization 

that uses the Java ecosystem, and 62% of respondents work 

at organizations where Java is the primary programming 

language. 68% of respondents working at an organization 

that uses Java at all said their org uses JUnit, and 50% said 

they use JMeter. Of the respondents who work at primarily 

Java organizations, 77% said they use JUnit, and 53% said 

they are using JMeter. So these two open source testing 

tools are taking hold in the Java world.

*Margin of error calculated with 95% confidence interval

  Do you believe continuous delivery has been 
achieved in your organization?

  Which of the following testing automation tools 
does your organization use?

  Does your organization automate integration, 
component, or performance testing?

Believes CD has been fully achieved Does not believe CD has been
fully achieved

0

10

20

30

23 13 23 13 25 11

Automates 
integration testing

Automates 
component testing

Automates 
performance 

testing

JUnit Selenium JMeter SoapUI Cucumber
0

10

20

30

40

50

60

70

61 46 45 29 21

0 10 20 30 40 50 60 70 80

JUnit

Selenium

70

77

75

71

46
47

50

47
46

50

50
52

43

66

71
61

65
60

JMeter

JUnit

U
S
E
S

D
O
E
S

N
O
T

U
S
E

Selenium

JMeter

Automates integration testing Automates component testing

Automates performance testing



Also called component tests, 
UNIT TESTS take individual 

pieces of an application's source 

code, called units, and ensures 

they are operating properly. 

Since these units don't rely on 

external dependencies, 

automating them is a relatively 

straightforward process. 

USER ACCEPTANCE 
TESTS ensure that a user is 

satisfied with a product's 

function. These can be used

to test user stories and ensure 

that they have been 

implemented correctly. Since this 

is based on the subjective 

opinions of end users, this is not 

conducive to automation. 

78% of respondents perform 

manual user acceptance tests.

58% of respondents perform 

automated unit tests.

INTEGRATION TESTS
are performed when two 

pieces of software are  -    

combined and tested as a -  -  

single unit. It should be an-  -  

easy task to ensure that two-  -  

 pieces of software can-  -  

communicate between each-  -  

 other, and can be easily-  -  

-   automated. 

61% of readers perform 

automated integration tests.

70% of users perform manual 

usability tests. 

USABILITY TESTS
These are tests that are 

    performed directly with 

      users to determine how

           easy it is to use a piece

       of software. Because 

     results rely on the opinions

of real users, this cannot easily

be automated. 

63% of DZone's audience 
perform manual post-
deployment tests.

POST-DEPLOYMENT 
TESTS can vary between 

smoke checks to ensure the 

application is running and 

testing any major bugs that 

become apparent once the 

application is live. Because of 

the troubleshooting and 

unique circumstances 

involved, this is not an easy 

task to automate. 

COPYRIGHT DZONE.COM 2017

PERFORMANCE TESTS 
determine the speed or e�ectiveness

of an application or network. 

Performance tests may be manually 

performed to determine the source of a 

performance bottleneck or diagnose an 

issue, but automated performance 

testing is useful to get a consistent, 

up-to-date picture of an application's 

performance. task to automate. 

55% of users automate performance 

tests, while 45% perform them manually.

M A N U A L  T E S T I N G A U T O M AT I C  T E S T I N G

STOP

Automated testing is seen as one of the key components of achieving Continuous Delivery in an organization. 

Thought leaders often suggest to automate everything. However, as of right now, not everything can, or should, be 

automated, particularly tests that rely on real-user input. So, developers stand at a crossroads: which tests can be 

automated now, and why? We asked almost 400 developers about which tests they performed manually and which 

were performed automatically. 

THE  C R O S S R O A D S  OF  T E S T I N G



DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

DZONE.COM/GUIDES DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

6

TAKING YOUR APPLICATIONS’ TESTABILITY TO 
THE NEXT LEVEL

Nearly all successful teams understand at least 

the fundamentals of testable system code: good 

automated unit and integration/API tests have 

finally reached the point of being an accepted—

or even required—part of a solid delivery process. 

What’s still missing with many teams is an 

understanding of how small changes to systems 

and user interfaces can dramatically improve test 

automation at the functional level.

Because of its focus on business value, functional 

system testing is one of the most critical parts 

of a project’s overall quality and value delivery. 

Wrapping this critical, high-value testing in 

sensible automation helps project teams ensure 

they’re keeping their overall.

MAKING THE CASE FOR TESTABILITY
Getting testing involved earlier isn’t just about reducing 

the cost of testing later in the project. It’s also about making 

testing easier from the start. Far too many teams miss 

the fact that making testing easier can be dramatically 

impacted by making the system itself easier to test. 

High-performing teams look at testability as one of their 

fundamental design considerations.

DEVELOPER-LEVEL TESTABILITY
Good software design focuses on simplicity and 

maintainability. Testability below the UI layer dovetails 

with good craftsmanship principles and practices like low 

complexity, dependency injection, and low coupling. Test-

driven practices drive out this simplicity by their very 

nature; however, good design practices keep the system more 

testable regardless of when test automation is completed.

EASING FUNCTIONAL AUTOMATION WOES
Functional test automation is by its very nature far 

more complex and brittle than automation at the unit or 

integration level. Not only are there complexities of logic, 

dependencies, etc., the very technologies and toolsets for 

user interfaces drop in additional challenges for automation. 

These challenges often leave teams with brittle, low-value 

functional automation tests.

Thankfully, a few simple approaches can greatly improve 

testability, making it far easier to have high-value, low-

maintenance automation suites that check the system’s 

functionality. The approaches listed here start out with 

simple techniques for interacting with the UI, escalate to 

simplifying asynchronous situations, and finish off with 

complex configuration of the system.

STARTING EASY: LOCATORS
Every automated functional test tool, regardless of platform, 

relies on finding things to interact with on the user interface: 

buttons, fields, text, controls, etc. The testing tool has to 

locate those objects to click them, inject text, compare 

text, and numerous other actions. Exact mechanics for this 

location process vary greatly across platforms; however, the 

concepts are the same regardless.

Various properties, attributes, or metadata can be used for 

Building Testable 
Apps

BY JIM HOLMES
EXECUTIVE CONSULTANT, PILLAR TECHNOLOGY

Automated testing at the 
code level isn’t something that 
can be “bolted on” after your 
code’s complete—you need to 
start with testable code from 
the beginning. 

Ensure you have clear 
acceptance criteria and great 
communication with your 
customers. 

After that you need to focus 
on clean design, effective 
dependency management, and 
good craftsmanship principles 
like SOLID.

01

02

03

Q U I C K  V I E W



DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

7

RESEARCH PARTNER SPOTLIGHT

this location process—appropriately, these are referred to 

as locators.

GOOD IDS
HTML gives one of the simplest mechanics for good locators: 

the ID attribute. Generally speaking, IDs are fast  

for tools to locate, they’re unique on a page (if the page  

is valid HTML!), and they’re also very easy for developers  

to customize.

As an example, consider a table used to display contacts 

from a Customer Relationship Management (CRM) system. 

Adding an ID to an element on the page is normally a very 

simple task for a developer working on the page’s code. The 

result may not seem earth-shattering, but it makes all the 

difference in the world for test automation:

With this simple addition in place, one statement will enable 

a WebDriver script to quickly locate the table: 

WebElement table = browser.FindElement(By.Id(“contacts”));

Again, the mechanics for implementing the HTML attribute 

vary by platform. Controls on the page may offer the ability 

to easily add attributes to their rendered output. Various 

frameworks offer great control over their output as well.

DEALING WITH DYNAMIC IDS
While HTML IDs are a terrific locator, you can’t use them 

thoughtlessly. Sometimes they’re not the best locator, 

especially if they’re dynamically created.

Going back to our example of a contact list, imagine a grid/table 

control that dynamically creates IDs for each row in the grid.

Suppose you’re writing a test to confirm data for the contact 

Jayne Cobb. A WebDriver statement to locate that row, given 

the above HTML, could look like this: 

WebElement JayneRow = browser.FindElement(By.Id(“2”));

That would work well for the first run, but what would 

happen if the source data changed? The row you’re looking 

for would likely appear elsewhere in the grid—your script 

would break and your test would fail.

A short conversation between testers and developers can 

solve this. The underlying system can be altered to render 

an ID that contains information pertinent and specific to 

the data you’re looking to locate. In the case below, the ID 

attribute is a composite of the contact’s ID and last name.

This dramatically changes the functional test script, enabling 

us to locate by the desired test row’s data:

WebElement JayneRow = browser.FindElement(By.

CssSelector(“[id$=Cobb”));

var contactSource = new kendo.data.DataSource({

            requestEnd: function (e) {

                var node = document.

getElementById(‘flags’);

                while (node.firstChild) {

                    node.removeChild(node.firstChild);

                }

                var type = e.type;

               $(‘#flags’).append(‘<div responseType=\’’ + 

type + ‘\’/>’);

            }

This snippet causes an empty DIV element to appear on the 

page with the specific action (post, update, delete, etc.) as an 

attribute within the element:

Now it’s easy to use your functional testing tool to wait for 

the actions to complete. Pseudo code for a test using this 

approach might look like:

//Navigate to screen

//Locate and edit an existing contact

WebDriverWait wait.Until(ExpectedConditions.

ElementExists(By.CssSelector(“#flags > 

div[responseType=‘update’]”)));



DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

DZONE.COM/GUIDES DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

8

TACKLING THE HARD THINGS: SYSTEM 
CONFIGURATION AND SERVICES
How do you solve hard problems in testing? Apply the same 

smart, thoughtful engineering approaches you do for solving 

hard software problems. Too often teams forget they can 

make major system changes to ease testing burdens.

Creating software switches to deactivate areas of the system 

that are hard to test is one of the best ways to improve 

testability. Creating stub or mock services 

is another.

Approaches like this take time and hard work, but they 

make total sense for high-value, high-risk areas of  

the system.

FEATURE SWITCHES
Experienced test automation folks regularly get asked “How 

do you write test scripts for CAPTCHA?” A common response 

is “Don’t.”

By its very nature, CAPTCHA is meant to prevent automation. 

This is why it’s used for guarding things like user registration 

or account creation. Trying to write test automation scripts 

to deal with it is crazy; however, the functional slice of 

creating a new account absolutely has to be covered. How to 

deal with this gap?

Easy: Cheat.

Teams can work to create a feature switch within the 

system itself that can totally disable CAPTCHA and enable 

the registration/creation process to proceed without having 

CAPTCHA as part of the flow. As mentioned earlier, this 

can be hard work, and it brings its own complexity to the 

situation. However, if the team has decided this particular 

flow merits the investment, then it’s worth it to have a 

configuration file, API service endpoint, or some other means 

that turns off CAPTCHA. Obviously similar code will be 

needed to return the system to its normal state…

This same approach can be used for similar concepts:

 • Third-Party Controls. Don’t write tests for those 

controls—the vendor should have tested them. If those 

controls are hard to interact with, then use a feature 

switch to swap out for an easier route. TinyMCE has long 

had a history of being hard to automate. Swap it out for a 

simple text box. 

 • Email. Need to check validity of outgoing mails? Don’t 

ever, EVER use a functional test to log on to Gmail or some 

other service. Instead, configure an SMTP sink such as 

NDumbster or similar tool.

STUB OUT ENTIRE SERVICES
What is your functional test flow really dependent on? How 

many external services do you really need if you’re focused 

on the high-value business related part of your test?

For example, consider a check to ensure your order system 

enables you to search for a part, add that part to your 

shopping cart, and proceed to check out. There are a 

number of ways to consider testing this, but let’s take these 

considerations to work with:

 • User must have an account created, and be logged  

on as that user

 • User searches for a specific part known to be in 

the system

 • User adds that resulting part to their shopping cart

 • User proceeds to checkout. Part remains in 

shopping cart.

This test is not about checking out, it’s confirming you can 

search for a part, add it to the cart, and head to checkout. 

This test is also not about validating searches, it’s about 

adding a result from the search.

There are a number of things we don’t need to concern 

ourselves with as part of this test:

 • Logon. Tested elsewhere and is not central to the 

functionality of the search results to cart flow.

 • Part Search. Again, should be tested elsewhere and isn’t 

central to the flow.

Spending the time to stub or mock out these services 

would be a perfect use of a team’s time. The overall flow 

is high-value, so it needs wrapping with an automated 

check. Stubbing the services would let the team write the 

automated tests to work in any environment the mock could 

be established in—another great advantage, as external 

systems often aren’t available in lower environments for 

development and testing.

CLOSING 
Functional testing is one of the most critical aspects of 

software development. It focuses on the end user and 

business needs. Taking time to make systems more testable 

at the functional level reaps high rewards for teams 

disciplined and supported enough to do the work.

Jim Holmes is an Executive Consultant at Pillar Technology,  
where he works with organizations to improve their software  
delivery process. He’s also the owner/principal of Guidepost 
Systems, which lets him engage directly with struggling 
organizations. He has been in various corners of the IT world 
since joining the US Air Force in 1982. He’s spent time in LAN/
WAN and server management roles in addition to many years 
delivering great systems. When not at work you might find Jim 
in the kitchen with a glass of wine, playing Xbox, hiking with his 
family, or practicing guitar.





https://twitter.com/ajimholmes
https://www.linkedin.com/in/jim-holmes/


DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

9

RESEARCH PARTNER SPOTLIGHT

DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

Nine Critical Considerations for 
Testing Responsive Websites 

Using Selenium

Responsive website design is becoming a method of choice for 

many organizations. Among the primary motivations for embracing 

responsive design are:

 • Consistent user experience across all platforms

 • Improve marketing results by being mobile friendly

 • Lower maintenance cost

One code base across so many platforms and form factors raises the 

bar on quality and therefore the testing strategy.

In the below checklist, you can find the most critical testing 

consideration for a RWD that will ensure good UX, and sufficient 

test automation coverage. All of the below considerations can be 

automated using Selenium framework or cloud-based tools.

Does your website look right across all 

platforms like desktop browsers, smartphones, 

tablets, and IoT-supported devices? 

Does the site look okay in various 

orientations, like portrait and landscape, as 

well as in various languages?

Analyze web traffic to determine coverage 

strategy, identifying the mandatory 

platforms and OS versions to be tested 

throughout the SDLC.

Validate location services scenarios.  Design 

scenarios for both location specific data and 

the “traveling user”.  

Validate performance across all expected 

conditions. Factor in variables such as 

incoming events, background apps, location 

services, and changing network conditions 

(Data, Wi-Fi, Airplane mode, etc.)

Assess compliance with accessibility 

requirements across the market you serve. 

Using tools like WAVE that can be integrated 

into your Selenium scripts or be a stand-

alone tool for your test engineers, is a good 

choice (out of few others) to adopt.

Personalization strategies are driving an 

increasing quantity of private user data 

process by sites. Add data privacy scenarios 

to test suites. This includes authentication 

rules and types, cleaning of private data 

upon session termination. 

Validate CSS breakpoints across different 

form factors and orientations. When the 

site is launched across these displays, 

the navigation and the content of what is 

being displayed to the user changes (above 

the fold and beyond the fold content, 

hamburger menus, etc.). 

Performance optimization is key, especially 

considering Google’s recent prioritization 

of mobile-friendly sites. Performance 

testing for source and data loading, caching 

controls, and functional scenarios are 

proving to be effective tools for achieving 

critical performance gains.

Testing a RWD site across multiple platforms, 

means, dealing with large amount of test 

data. Having a quality dashboard after each 

test automation execution that is tag-driven 

for easy filtering enables data-driven and 

risk-based decisions.

1. VISUAL VALIDATIONS

4. PLATFORM COVERAGE

7. LOCALIZATION

2. ENVIRONMENT CONDITIONS

5. ACCESSIBILITY COMPLIANCE

8. SECURITY

3. NAVIGATION

6. PERFORMANCE

9. DON’T FORGET QUALITY 
ANALYSIS & VISIBILITY

BY CARLO CADET - DIRECTOR PRODUCT MARKETING, PERFECTO MOBILE



DZONE’S GUIDE TO AUTOMATED TESTING: IMPROVING APPLICATION SPEED AND QUALITY

1 0

Much has been written and said about DevOps, less so about the 

role of automated testing in a DevOps environment. In order to 

reap the full benefits of a healthy DevOps practice, organizations 

must integrate automated software testing into their Continuous 

Delivery pipelines. It is the only way to ensure that releases occur 

at both a high frequency, and with a high level of quality. 

In order to integrate continuous testing effectively into a 

DevOps toolchain, look for the following essential features when 

evaluating an automated testing platform:

• Support for a variety of languages, tools, and frameworks. The 

programming languages and development tools that your DevOps 

teams use today are likely to change in the future. Look for a 

testing solution that can support a broad array of languages, tools, 

and frameworks.  

• Cloud testing. On-demand cloud-based testing is the most 

cost-efficient option because it obviates the need to setup and 

maintain an on-premises test grid that is underutilized most 

of the time. It also reduces the resource drain associated with 

identifying and resolving false positives, or failures due to 

problems in the test infrastructure. 

• The ability to scale rapidly. Your testing platform should be able 

to perform tests as quickly as needed, and be able to do so across 

all required platforms, browsers, and devices.  It should also be 

highly scalable to support as many parallel tests at one time as 

you require.  

• Highly automated. DevOps teams achieve their speed and agility 

in part by automating as much of the software delivery process 

as possible. Your testing solution should work seamlessly with 

other components of your toolchain, most notably your CI and 

collaboration tools. 

• Security. In a DevOps environment, all members of the team have 

an important role to play in keeping applications secure. Testing 

platforms, therefore, need enterprise-grade security features. 

A software testing platform that includes these qualities will 

empower your organization to derive full value from its migration 

to a DevOps-based workflow by maximizing the agility, scalability 

and continuity of your software delivery pipeline.

WRITTEN BY LUBOS PAROBEK
VP OF PRODUCTS, SAUCE LABS

Automated Testing Is 

Essential To DevOps And 

Continuous Delivery

Sauce Labs accelerates the software development process by providing the world’s 
largest automated testing cloud for mobile and web applications.

Automated Testing Platform

CASE STUDY   
GoDaddy is a growing web hosting and domain registration company that 

serves more than 16 million customers across the globe. Based in Scottsdale, 

Arizona, the firm is the world’s largest domain name registrar, with more than 

70 million domain names under management. To ensure that websites created 

by its customers stay up and running around the clock, GoDaddy is committed 

to delivering the highest-quality software to support its backend systems. 

GoDaddy sought to increase cross-browser coverage and reduce the time and 

money it took to run its internal software testing environment. The company 

met its needs by selecting Sauce Labs, and now utilizes dozens of Sauce Labs 

virtual machines in parallel to run thousands of tests every day. The tests are 

automatically run as part of a CI/CD pipeline from GoDaddy’s Jenkins CI server. 

The company now continuously tests all popular browser and OS variations for 

its products and services, and can also easily test more browser variations as 

needed, thanks to the on-demand nature of Sauce Labs. 

STRENGTHS
•  Enterprise-grade cloud-based test infrastructure 

provides instant access to more than 800+ desktop 

browser/OS combinations, ~200 mobile emulators and 

simulators, and 1,000+ real devices

•  Highly scalable, on-demand platform reduces testing 

time from hours to minutes when tests are run in 

parallel 

•  Optimized for CI/CD workflows, testing frameworks, 

tools, and services 

•  Single platform for all your web and mobile app 

testing needs

CATEGORY 
Automated Testing 

Infrastructure

NEW RELEASES  
Daily

OPEN SOURCE 
Yes

NOTABLE CUSTOMERS
•  Salesforce 

•  WalMart Labs 

•  VISA 

•  Slack 

•  Starbucks

•  Yahoo! 

•  GoDaddy

WEBSITE  saucelabs.com BLOG  saucelabs.com/blogTWITTER  @saucelabs

SPONSORED  OP IN ION

http://saucelabs.com/
http://saucelabs.com/
http://saucelabs.com/blog
http://saucelabs.com/blog
https://www.diamanti.com/blog/
https://www.rainforestqa.com/blog
http://saucelabs.com/blog
https://twitter.com/saucelabs


Find out how Sauce Labs 
can accelerate your testing 
to the speed of awesome.

For a demo, please visit saucelabs.com/demo
Email sales@saucelabs.com or call (855) 677-0011 to learn more.

A brief history of web and mobile app testing.

B E F O R E  S A U C E  L A B S
Devices. Delays. Despair.

A F T E R  S A U C E  L A B S
Automated. Accelerated. Awesome.

http://www.saucelabs.com/demo?DZone.com



